摘要:
Blue light emitting glass and the preparation method thereof are provided. The blue light emitting glass has the following composition: aCaO.bAl2O3.cSiO2.xCeO2, wherein a, b, c and x are, by mol part, 15-55, 15-35, 20-60 and 0.01-5 respectively. The preparation method comprises: weighing the raw materials according to the composition of the blue light emitting glass; mixing the raw materials uniformly and melting the raw materials to obtain glass melt; moulding the glass melt to obtain transparent glass; thermally treating the transparent glass under reducing atmosphere, and thereafter obtaining the finished product. The blue light emitting glass obtained has intense broadband excitation spectrum in ultraviolet region and emits intense blue light under the excitation of ultraviolet light. It is suitable for using as luminescent medium material.
摘要:
A rare earth ion doped silicate luminescence glass and preparation method thereof are provided. The luminescence glass is the material with the following formula: aM2O.bM′2O3.cSiO2.dRE2O3, wherein M is at least one of Na, K and Li, M′ is at least one of Y, Gd, La, Sc and Lu, RE is at least one of Ce, Tm, Tb, Ho, Dy, Er, Nd, Sm, Eu and Pr. The preparation method is: grinding the raw material until mixed uniformly, calcining the raw material at 1200-1500° C. for 1-5 h, cooling to room temperature, annealing at 600-1100° C. for 0.5-24 h, cooling to room temperature again, molding then getting the product. The performance of the product is stable. The product is homogenous, and the luminescence performance is good. The light transmittance is high. The process of the preparation method is simple and with low cost.
摘要:
The present invention relates to ZnO green luminescent material and its preparation. The ZnO green luminescent material is prepared by doping a trivalent rare earth ion compound and a Li compound into zinc oxide material. The method comprises the following steps: (1) weighing raw material in the stoichiometric ratio of formula ZnO: xA, yLi, (2) grinding the raw material, sintering it at 800-1200° C. for 2-8 h, cooling to the room temperature, and then obtaining the ZnO green luminescent material. The present ZnO green luminescent material doped with trivalent rare earth ion compound and Li compound has high stability and luminous intensity, and has higher low-voltage cathode ray luminescence efficiency. The method can easily be operated and can be used widely.
摘要:
The present invention relates to ZnO green luminescent material and its preparation. The ZnO green luminescent material is prepared by doping a trivalent rare earth ion compound and a Li compound into zinc oxide material. The method comprises the following steps: (1) weighing raw material in the stoichiometric ratio of formula ZnO: xA, yLi, (2) grinding the raw material, sintering it at 800-1200° C. for 2-8 h, cooling to the room temperature, and then obtaining the ZnO green luminescent material. The present ZnO green luminescent material doped with trivalent rare earth ion compound and Li compound has high stability and luminous intensity, and has higher low-voltage cathode ray luminescence efficiency. The method can easily be operated and can be used widely.
摘要:
A green luminescent glass for ultraviolet LED and a preparation method for glass are disclosed. The preparation method includes: weighing raw materials of CaCO3, Al2O3, SiO2, CeO2 and Tb4O7 respectively and mixing the raw materials evenly; melting the raw materials at 1500˜1700 for 0.5˜3 hours and then molding to form a glass; annealing the formed glass in reducing atmosphere with temperature of 650˜1050 for 3˜20 hours; and cooling the glass to room temperature to obtain the green luminescent glass for ultraviolet LED. The green luminescent glass for ultraviolet LED prepared according to the preparation method of the disclosure has advantages of high luminous intensity, uniformity and stability.
摘要:
Bismuth ion sensitized rare earth germanate luminescence materials and preparation methods are disclosed. The luminescence materials are the compounds of the following general formula (Y1-x-y-zAxBiyLnz)2GeO5. The preparation methods comprise: using oxides, carbonates, oxalates, acetates, nitrates or halides of Y, A, Bi, Ln and Ge as raw materials, wherein A is one of Gd, Lu, Sc and La, and Ln is at least one of Tm, Ho, Sm, Tb, Eu and Dy, homogeneously grinding the raw materials, sintering at 1300-1500° C. for 6-24 h, and then cooling them to room temperature to obtain the bismuth ion sensitized rare earth germanate luminescence materials.
摘要:
The present invention relates to oxide luminescent materials activated by trivalent thulium and their preparations. The luminescent materials are the compounds with the following general formula: (RE1-xTmx)2O3, wherein a range of x is 0
摘要:
A full-color light-emitting material and preparation method thereof are provided. A light-emitting material is following general formula compound (Y1-x-y-zAxByCz)2GeO5, wherein 0
摘要:
Blue light emitting glass and the preparation method thereof are provided. The blue light emitting glass has the following composition: aCaO.bAl2O3.cSiO2.xCeO2, wherein a, b, c and x are, by mol part, 15-55, 15-35, 20-60 and 0.01-5 respectively. The preparation method comprises: weighing the raw materials according to the composition of the blue light emitting glass; mixing the raw materials uniformly and melting the raw materials to obtain glass melt; molding the glass melt to obtain transparent glass; thermally treating the transparent glass under reducing atmosphere, and thereafter obtaining the finished product. The blue light emitting glass obtained has intense broadband excitation spectrum in ultraviolet region and emits intense blue light under the excitation of ultraviolet light. It is suitable for using as luminescent medium material.
摘要:
Bismuth ion sensitized rare earth germanate luminescence materials and preparation methods are disclosed. The luminescence materials are the compounds of the following general formula (Y1-x-y-zAxBiyLnz)2GeO5. The preparation methods comprise: using oxides, carbonates, oxalates, acetates, nitrates or halides of Y, A, Bi, Ln and Ge as raw materials, wherein A is one of Gd, Lu, Sc and La, and Ln is at least one of Tm, Ho, Sm, Tb, Eu and Dy, homogeneously grinding the raw materials, sintering at 1300-1500° C. for 6-24 h, and then cooling them to room temperature to obtain the bismuth ion sensitized rare earth germanate luminescence materials.