Abstract:
The present invention provides for transmitting a spread signal in a mobile communication system. The present invention includes spreading a signal using a plurality of spreading codes, wherein the plurality of spreading codes have a spreading factor, multiplexing the spread signal by code division multiplexing, transmitting the multiplexed signal via a plurality of neighboring frequency resources of one OFDM symbol of a first antenna set, and transmitting the same multiplexed signal via a plurality of neighboring frequency resources of one OFDM symbol of a second antenna set.
Abstract:
There is disclosed a door handle having a vein authentication function including a housing provided in a door; a sensor provided in the housing for sensing a user's hand touching the housing or located in a preset region; a controller receiving a measured value from the sensor part; and an authentication part operating based on a control signal of the controller, photographing the user's hand and transmitting the photograph of the user's hand to the controller, wherein the authentication part has a photographing angle that is variable based on a position of the user's hand.
Abstract:
A method of acquiring information on a resource region for transmitting PHICH and a method of receiving PDCCH using the same are disclosed. The resource region for transmitting the PHICH can be specified by first information corresponding to the per-sub frame PHICH number and second information corresponding to a duration of the PHICH within the subframe. The first Information can be specified into a form resulting from multiplying a predetermined basic number by a specific constant. And, the specific constant can be transmitted via PBCH. Moreover, the second information can be acquired from the PBCH as well.
Abstract:
A method for transmitting acknowledgement/negative acknowledgement (ACK/NACK) signals by an apparatus in a wireless communication system. The apparatus spreads ACK/NACKs using spreading codes of a spreading factor, the spreading factor being one of a first spreading factor equal to 2 and a second spreading factor equal to 4. The apparatus transmits one or more physical hybrid automatic repeat request (HARQ) indicator channel (PHICH) groups allocated in units of four resource elements, each PHICH group carrying up to four ACK/NACK signals for the first spreading factor, and up to eight ACK/NACK signals for the second spreading factor. A total number of allocated PHICH groups for the first spreading factor is determined as twice a total number of allocated PHICH groups for the second spreading factor. Each ACK/NACK signal is identified using an index pair of a PHICH group index and a spreading code index.
Abstract:
A method and a user equipment for controlling an uplink transmission at in a wireless communications system are discussed, the user equipment being configured with multiple component carriers. The method according to an embodiment includes receiving, from a base station, Radio Resource Control (RRC) configuration information for a channel status information report; and performing a procedure for periodically transmitting channel status information to the base station. If the corresponding downlink component carrier is in an active state at a time for transmitting the channel status information, a transmission of the channel status information report is performed at the time. If the corresponding downlink component carrier is in a non-active state at a time for transmitting the channel status information report, the transmission of the channel status information report is skipped at the time. Signal reception is limited by the user equipment on a downlink component carrier in the non-active state.
Abstract:
A reference signal transmission method in a downlink MIMO system is disclosed. The downlink MIMO system supports a first UE supporting N transmission antennas among a total of M transmission antennas (where M>N) and a second UE supporting the M transmission antennas. The method includes transmitting, by a base station (BS), subframe-associated information which designates a first subframe in which data for the first UE and the second UE is transmitted and a second subframe in which data only for the second UE can be transmitted within a radio frame having a plurality of subframes, and transmitting the first subframe and the second subframe. Reference signals corresponding to antenna ports ‘0’ to ‘N−1’ of the N antennas are mapped to the first subframe, and reference signals corresponding to antenna ports ‘0’ to ‘M−1’ of the M antennas are mapped to the second subframe.
Abstract:
A method and apparatus are presented for transmitting acknowledgement (ACK)/negative acknowledgement (NACK) signals in a wireless communication system. ACK/NACKs are spread using spreading codes of a spreading factor, the spreading factor being one of a first spreading factor equal to 2 and a second spreading factor equal to 4. One or more physical hybrid automatic repeat request (ARQ) indicator channel (PHICH) groups allocated in units of four resource elements are transmitted, each PHICH group carrying up to four ACK/NACK signals for the first spreading factor, and up to eight ACK/NACK signals for the second spreading factor. A total number of allocated PHICH groups for the first spreading factor is determined as twice a total number of allocated PHICH groups for the second spreading factor. A PHICH group index for an ACK/NACK is determined using a first function. A spreading code index for the ACK/NACK is determined using a second function.
Abstract:
A method for transmitting signals using a plurality of component carriers in a wireless communication system. The method according to one embodiment includes controlling transmission powers for one or more channels per each component carrier; and checking whether a total transmission power of a plurality of channels for simultaneous transmission over the plurality of component carriers exceeds a total maximum transmission power configured for a communication apparatus or not, the plurality of channels including a physical uplink control channel (PUCCH) and a physical uplink shared channel (PUSCH); and if the total transmission power of the plurality of channels over the plurality of component carriers exceeds the total maximum transmission power, adjusting a transmission power of the PUSCH in such a way that the total transmission power of the plurality of channels over the plurality of component carriers does not exceed the total maximum transmission power transmission power.
Abstract:
A method for controlling transmission power by a communication apparatus in a wireless communication system supporting a plurality of component carriers. A total transmission power of a physical uplink shared channel (PUSCH) is calculated for a PUSCH transmission on a first component carrier and a sounding reference symbol (SRS) for a SRS transmission on a second component carrier. The PUSCH transmission is prioritized rather than the SRS transmission if the PUSCH transmission overlaps with the SRS transmission in a time domain and the total transmission power exceeds a maximum transmission power configured for the communication apparatus.
Abstract:
A method is described for receiving data from a base station by a first type user equipment (UE) capable of using a plurality of frequency bands based on resource allocation in a first wireless mobile communication system capable of using the plurality of frequency bands. Each of the plurality of frequency bands has a respective bandwidth for a second wireless mobile communication system. Specific control information is received from the base station indicating whether a specific frequency band among the plurality of frequency bands is used for downlink resource allocation or not. Control information reception resources comprise a common resource area and a first type UE-specific resource area. The common resource area is for both the first type UE and a second type UE, the second type UE adapted for the second wireless mobile communication system not capable of using the plurality of frequency bands.