Abstract:
According to one embodiment, a method for transmitting an uplink signal includes transmitting the uplink signal including a block of data symbols. The block of data symbols are mapped to at least two sets of subcarrier blocks. Each data symbol of the block of data symbols is mapped to one of subcarriers of the at least two sets of subcarrier blocks. The at least two sets of subcarrier blocks are not contiguous in frequency. The block of data symbols are mapped in sequence starting with a first data symbol to the at least two sets of subcarrier blocks and in increasing order of subcarrier index.
Abstract:
A packet data transmitting method and mobile communication system using the same enables transmission of common ACK/NACK information from each sector of a base station to a user entity in softer handover. The method includes receiving via at least one of the plurality of sectors a data packet from the mobile terminal, the data packet being correspondingly received for each of the at least one of the plurality of sectors; combining the correspondingly received data packets, to obtain a signal having a highest signal-to-noise ratio; decoding the value obtained by the combining; determining a transmission status of the data packet according to the decoding; and transmitting to the mobile terminal a common ACK/NACK signal including one of a common ACK signal and a common NACK signal according to the determining, the common ACK/NACK signal being transmitted via each of the at least one sector.
Abstract:
There is provided a method of transmitting control information in a Wireless Local Area Network (WLAN) system, comprising transmitting first control information by means of cyclic shift delay diversity beam-forming and transmitting second control information. The first control information comprises information necessary for each of a plurality of target stations of the second control information to receive the second control information. The second control information beamformed and transmitted to the plurality of target stations.
Abstract:
A method of transmitting a Physical Layer Convergence Procedure (PLCP) frame in a Very High Throughput (VHT) Wireless Local Area Network (WLAN) system includes generating a MAC Protocol Data Unit (MPDU) to be transmitted to a destination station (STA), generating a PLCP Protocol Data Unit (PPDU) by adding a PLCP header, including an L-SIG field containing control information for a legacy STA and a VHT-SIG field containing control information for a VHT STA, to the MPDU, and transmitting the PPDU to the destination STA. A constellation applied to some of Orthogonal Frequency Division Multiplex (OFDM) symbols of the VHT-SIG field is obtained by rotating a constellation applied to an OFDM symbol of the L-SIG field.
Abstract:
A method for transmitting feedback information via a Spatial Rank Index (SRI) channel includes determining, at an access terminal, a value of a spatial rank index and transmitting, from the access terminal through the SRI channel, feedback information indicating the determined value of the spatial rank index according to a prescribed coding. The codeword of the prescribed coding is one of: (0,0,0,0,0,0,0,0), (1,0,1,0,1,1,0,1), (0,1,1,1,0,0,1,1), or (1,1,0,1,1,1,1,0).
Abstract:
A method for generating a channel quality indicator (CQI) in a mobile communication system is presented. The method includes grouping a number of subcarriers to form at least one channel quality indicator subband for generating a channel quality indicator, and generating a channel quality indicator in each channel quality indicator subband, wherein a size of each channel quality indicator subband is dependent on a system bandwidth value and is an integer multiple of a downlink frequency resource unit size, wherein the downlink frequency resource unit size is prescribed according to the system bandwidth value.
Abstract:
According to one embodiment, a method for transmitting an uplink signal includes transmitting the uplink signal including a block of data symbols. The block of data symbols are mapped to at least two sets of subcarrier blocks. Each data symbol of the block of data symbols is mapped to one of subcarriers of the at least two sets of subcarrier blocks. The at least two sets of subcarrier blocks are not contiguous in frequency. The block of data symbols are mapped in sequence starting with a first data symbol to the at least two sets of subcarrier blocks and in increasing order of subcarrier index.
Abstract:
A method of transmitting a data frame by a transmitter in a WLAN system is provided. The method includes generating a data block including at least one data units respectively transmitted through at least one or more spatial streams to at least one receiver, transmitting first control information to the at least one receiver, transmitting second control information to each receiver, and transmitting the data block to the at least one receiver. The first control information includes a length indicator for the data block, a MIMO indicator indicating whether the data block is for SU-MIMO or MU-MIMO, and a spatial stream indication field including information about the number of the spatial streams. The second control information includes a FEC coding field indicating an encoding scheme applied to the data unit and an MCS field indicating an MCS applied to the data unit.
Abstract:
A method and a radio apparatus for signal transmission in a Wireless Local Area Network (WLAN) system are discussed. The method according to an embodiment includes generating first and second very high throughput (VHT) fields including first and second control information, respectively; and transmitting a physical layer protocol data unit (PPDU) including the first and second VHT fields to at least one target station. The first VHT field includes an indicator indicating whether the PPDU is to be transmitted by using a single-user multiple input multiple output (SU-MIMO) scheme or a multi-user multiple input multiple output (MU-MIMO) scheme.
Abstract:
A method for channel-coding information bits using a code generation matrix including 32 rows and A columns corresponding to length of the information bits includes, channel-coding the information bits having “A” length using basis sequences having 32-bit length corresponding to columns of the code generation matrix, and outputting the channel-coded result as an output sequence. If “A” is higher than 10, the code generation matrix is generated when (A-10) additional basis sequences were added as column-directional sequences to a first or second matrix. The first matrix is a TFCI code generation matrix composed of 32 rows and 10 columns used for TFCI coding. The second matrix is made when at least one of an inter-row location or an inter-column location of the first matrix was changed. The additional basis sequences satisfy a value 10 of a minimum Hamming distance.