Abstract:
In some embodiments, an apparatus includes an optical transceiver system that includes a set of optical transmitters and a backup optical transmitter. In such embodiments, each optical transmitter from the set of optical transmitter can transmit at a unique wavelength from a set of wavelengths. The backup optical transmitter can transmit at a wavelength from the set of wavelengths when an optical transmitter from the set of optical transmitters associated with that wavelength fails. In other embodiments, an apparatus includes an optical transceiver system that includes a set of optical receivers and a backup optical receiver. The backup optical receiver can receive at a wavelength from the set of wavelengths when an optical receiver from the set of optical receivers associated with that wavelength fails.
Abstract:
This disclosure describes the Fast Chromatic Dispersion Estimation (FCDE) techniques which corrects for chromatic dispersion in high data rate optical communications systems such as some coherent optical communications systems. FCDE may utilize transform such as fast-Fourier transforms to estimate the chromatic dispersion. From an estimate of the chromatic dispersion, the techniques may determine filter tap coefficients for compensating the chromatic dispersion.
Abstract:
Described herein is a die-to-wafer bonding process that utilizes micro-transfer printing to transfer die from a source wafer onto an intermediate handle wafer. The resulting intermediate handle wafer structure can then be bonded die-down onto the target wafer, followed by removal of only the intermediate handle wafer, leaving the die in place bonded to the target wafer.
Abstract:
In some embodiments, a system includes a set of servers, a set of switches within a switch fabric, and an optical device. The optical device is operatively coupled to the set of servers via a first set of optical fibers. Each server from the set of servers is associated with at least one wavelength from a set of wavelengths upon connection to the optical device. The optical device is operatively coupled to each switch from a set of switches via an optical fiber from a second set of optical fibers. The optical device, when operative, wavelength demultiplexes optical signals received from each switch from the set of switches, and sends, for each wavelength from the set of wavelengths, optical signals for that wavelength to the server from the set of servers.
Abstract:
In some embodiments, an apparatus includes an optical detector that can sample asynchronously an optical signal from an optical component that can be either an optical transmitter or an optical receiver. In such embodiments, the apparatus also includes a processor operatively coupled to the optical detector, where the processor can calculate a metric value of the optical signal without an extinction ratio of the optical signal being measured. The metric value is proportional to the extinction ratio of the optical signal. In such embodiments, the processor can define an error signal based on the metric value of the optical signal and the processor can send the error signal to the optical transmitter such that the optical transmitter modifies an output optical signal.
Abstract:
In some embodiments, an apparatus includes an optical transceiver that includes a first set of electrical transmitters operatively coupled to a switch. Each electrical transmitter from the first set of electrical transmitters is configured to transmit an electrical signal from a set of electrical signals. In such embodiments, the switch is configured to switch an electrical signal from the set of electrical signals such that the set of electrical signals are transmitted via a second set of electrical transmitters. Each electrical transmitter from the second set of electrical transmitters is operatively coupled to an optical transmitter from a set of optical transmitters. The set of optical transmitters is operatively coupled to an optical multiplexer. In such embodiments, at least one electrical transmitter from the second set of electrical transmitters is associated with a failure within the optical transceiver.
Abstract:
In some embodiments, a system includes a set of servers, a set of switches within a switch fabric, and an optical device. The optical device is operatively coupled to the set of servers via a first set of optical fibers. Each server from the set of servers is associated with at least one wavelength from a set of wavelengths upon connection to the optical device. The optical device is operatively coupled to each switch from a set of switches via an optical fiber from a second set of optical fibers. The optical device, when operative, wavelength demultiplexes optical signals received from each switch from the set of switches, and sends, for each wavelength from the set of wavelengths, optical signals for that wavelength to the server from the set of servers.
Abstract:
In some embodiments, an apparatus includes a first optical transceiver. The first optical transceiver includes a set of optical transmitters, an optical multiplexer operatively coupled to the set of optical transmitters, and a variable optical attenuator operatively coupled to the optical multiplexer. The variable optical attenuator is configured to receive a control signal from a controller of the first optical transceiver and modulate a signal representing control information with an output from the optical multiplexer. The control information is associated with the control signal and for a second optical transceiver operatively coupled to the first optical transceiver.
Abstract:
In some embodiments, an apparatus includes an optical detector that can sample asynchronously an optical signal from an optical component that can be either an optical transmitter or an optical receiver. In such embodiments, the apparatus also includes a processor operatively coupled to the optical detector, where the processor can calculate a metric value of the optical signal without an extinction ratio of the optical signal being measured. The metric value is proportional to the extinction ratio of the optical signal. In such embodiments, the processor can define an error signal based on the metric value of the optical signal and the processor can send the error signal to the optical transmitter such that the optical transmitter modifies an output optical signal.
Abstract:
In some embodiments, an apparatus includes a coherent optical receiver that can receive during a first time period a set of in-phase signals and a set of quadrature signals having a skew from the set of in-phase signals. The coherent receiver can blindly determine a delay between the set of in-phase signals and the set of quadrature signals based on the set of in-phase signals and the set of quadrature signals. The delay includes an intersymbol portion and an intrasymbol portion. The coherent optical receiver can apply the delay at a second time after the first time period such that a skew after the second time is less than the skew at the first time period.