Abstract:
A protocol for optimizing the use of coded transmissions such as over wireless links. In this technique, interframes are split into segments selected to be an optimum size according to transmission characteristics of the radio channel. The inverse process is applied at the receiver. Using this scheme, segments containing erroneous data may be resent.
Abstract:
A service option overlay for a CDMA wireless communication in which multiple allocatable subchannels are defined on a reverse link by assigning different code phases of a given long pseudonoise (PN) code to each subchannel. The instantaneous bandwidth needs of each on-line subscriber unit are then met by dynamically allocating none, one, or multiple subchannels on an as needed basis for each network layer connection. The system efficiently provides a relatively large number of virtual physical connections between the subscriber units and the base stations on the reverse link for extended idle periods such as when computers connected to the subscriber units are powered on, but not presently actively sending or receiving data. These maintenance subchannels permit the base station and the subscriber units to remain in phase and time synchronism in an idle mode and also request additional channels. This in turn allows fast acquisition of additional subchannels as needed by allocating new code phase subchannels. Preferably, the code phases of the new channels are assigned according to a predetermined code phase relationship with respect to the code phase of the corresponding maintenance subchannel.
Abstract:
A communication system, such as a wireless CDMA system, detects markers with fewer errors by having field units transmit the markers at different power levels (e.g., 9 dB for one marker and 11 dB for another marker). The difference in power levels of the markers allows the base station to identify the request markers using alternative criteria with a low probability of error, where the alternative criteria may include comparing the markers to respective energy level thresholds, monitoring occupancy of time slots, occupancy of mutually exclusive code channels, or combinations thereof. For example, in one particular embodiment, a request marker, which is generally a high priority marker, is transmitted with higher power, which improves the probability of detection and reduces the probability of false detection of the request marker.
Abstract:
A technique for encoding a signal used in a digital communication system in which individual traffic channel data rates may be adapted to specific channel conditions. In particular, a forward error correction coding rate is adapted for individual channels while at the same time maintaining a fixed block size independent of the FEC coding rate. This allows the system data rate to adapt to the channel conditions experienced by a specific user. Thus, users experiencing good communication conditions with low multipath distortion may be allocated higher capacity, whereas users with significant multipath distortion may make use of lower rate (higher levels of coding) error codes to maintain high quality. Messages are sent from a transmitter to a receiver to inform the receiver of the coding rate implemented at any given point in time. These parameters may be adjusted independent of transmitted power level through the expedient of ensuring that size of a transmitted frame remains constant, while permitting the ability to change FEC coding rates and FEC block sizes.
Abstract:
A technique for encoding digital communication signals. Data symbols are augmented in pilot symbols inserted at predetermined positions. The pilot augmented sequence is then fed to a deterministic error correction block encoder, such as a turbo product coder, to output a coded sequence. The symbols in the error correction encoded sequence are then rearranged to ensure that the output symbols derived from input pilot symbols are located at regular, predetermined positions. As a result, channel encoding schemes can more easily be used which benefits from power of two length block sizes.
Abstract:
A protocol for optimizing the use of coded transmissions such as over wireless links. In this technique, interframes are split into segments selected to be an optimum size according to transmission characteristics of the radio channel. The inverse process is applied at the receiver. Using this scheme, segments containing erroneous data may be present.
Abstract:
A repeater for a wireless communication network includes a reception antenna and first and second transmission antennas. The repeater also includes a weighting circuit which applies a weight to at least one of first and second signals on first and second transmission paths coupled to the first and second transmission antennas respectively, and a control circuit configured to control the weighting circuit in accordance with an adaptive algorithm to thereby increase isolation between a reception path coupled to the reception antenna and the first and second transmission paths.
Abstract:
Combinations of correlation results are used to achieve detection of multiple coded signals at a receiver in a wireless communications system. The code applied to signals includes a lower rate code and a higher rate code. The lower rate code is a nested or tiered code such that it comprises at least two code sequences of the higher rate code. The received coded signal is correlated with the higher rate code using a single higher rate correlator to provide a higher rate code correlation result. The higher rate code correlation results are fed to two or more lower rate code correlators that combine multiple higher rate code correlation results, each using a different lower rate code, to provide corresponding lower rate code correlation results. The presence of at least one coded signal or mutually exclusive coded signals can be determined from the lower rate code correlation results.
Abstract:
Combinations of correlation results are used to achieve detection of multiple coded signals at a receiver in a wireless communications system. The code applied to signals includes a lower rate code and a higher rate code. The lower rate code is a nested or tiered code such that it comprises at least two code sequences of the higher rate code. The received coded signal is correlated with the higher rate code using a single higher rate correlator to provide a higher rate code correlation result. The higher rate code correlation results are fed to two or more lower rate code correlators that combine multiple higher rate code correlation results, each using a different lower rate code, to provide corresponding lower rate code correlation results. The presence of at least one coded signal or mutually exclusive coded signals can be determined from the lower rate code correlation results.
Abstract:
A method and apparatus are used to support the transmission of data to a user over multiple allocated data channels. Data packets are transmitted in timeslots of the allocated data channels to corresponding target receivers without the need for explicitly assigning particular time-slots to a target user well in advance of transmitting any data packets in the time-slots. Instead, each data packet transmitted in a time-slot includes a header label or preamble indicating to which of multiple possible receivers a data packet is directed. The preamble also preferably includes decoding information indicating how a corresponding data payload of the data packet is to be processed for recapturing transmitted raw data.