Abstract:
A system and method for measuring cooling effectiveness of a component is disclosed. The method includes providing a component with a coating applied on a surface of the component. Further, the method includes supplying a first gaseous medium over a surface of the component through a plurality of holes in the component and feeding a second gaseous medium along the surface of the component. Further, the method includes exposing the surface of the component to the first and second gaseous mediums for a predetermined period. The method further includes obtaining an image of the surface of the component exposed to the first and second gaseous mediums for the predetermined period. The method includes analyzing the obtained image to determine whether at least a portion of the coating is removed from the surface of the component upon exposure to the second gaseous medium.
Abstract:
A hydrocarbon fluid containment article having a wall with a surface that is wetted by hydrocarbon fluid. The surface includes an anti-coking coating. The anti-coking coating includes a copper salt, a silver salt, or a combination thereof. A gas turbine engine component including a wall having a first surface and an anti-coking coating on the first surface of the wall that is wetted by hydrocarbon fluid. The anti-coking coating including a copper salt, a silver salt, or a combination thereof that prevents the formation of gum or coke on a surface thereon. Methods for reducing the deposition of thermal decomposition products on a wall of an article are also provided.
Abstract:
An article for high temperature service is presented. The article includes a substrate and a thermal barrier coating disposed on the substrate. The thermal barrier coating includes a plurality of aluminum-based particles dispersed in an inorganic binder, wherein the aluminum-based particles are substantially spaced apart from each other via the inorganic binder such that the thermal barrier coating is substantially electrically and thermally insulating. Method of making the article is also presented.
Abstract:
An article for high temperature service is presented. The article includes a substrate and a thermal barrier coating disposed on the substrate. The thermal barrier coating includes a plurality of aluminum-based particles dispersed in an inorganic binder, wherein the aluminum-based particles are substantially spaced apart from each other via the inorganic binder such that the thermal barrier coating is substantially electrically and thermally insulating. Method of making the article is also presented.
Abstract:
A method for removing a ceramic coating from a substrate is presented. The method includes contacting the ceramic coating with a composition including a fluoride source and nitric acid. A method of forming a component having a variation in saturation magnetization is presented. The method includes masking selected portions of a surface of a metallic component using a ceramic coating to form a masked metallic component; selectively diffusing nitrogen into the metallic component by exposing the masked metallic component to a nitrogen-rich atmosphere; and removing the ceramic coating from the surface of the metallic component by contacting the ceramic coating with a composition including the fluoride source and nitric acid.
Abstract:
A reactor has an inner surface accessible to the hydrocarbon and comprising a sintered product of at least one of cerium oxide, zinc oxide, tin oxide, zirconium oxide, boehmite and silicon dioxide, and a perovskite material of formula : AaBbCcDd03-δ. 0
Abstract:
A surface treatment method includes: contacting a substrate with a treatment material, the substrate comprising a metallic element, the treatment material comprising an alkaline earth metal element, an alkali metal element, or any combination thereof; and forming on the substrate a surface layer comprising a first oxide of the alkaline earth metal element, the alkali metal element, or any combination thereof and a second oxide of the metallic element. A device has: a substrate layer comprising a metallic element; and a surface layer comprising a first oxide of an alkaline earth metal element, an alkali metal element, or any combination thereof, and a second oxide of the metallic element.
Abstract:
A pump for an oil and gas well includes a barrel with a surface configured to contact oil and gas well fluid. The pump further includes a first coating formed on at least a portion of the barrel surface. The first coating includes a combination of diamond particles and a composition including nickel and phosphorous. The pump also includes a plunger with a surface configured to contact oil and gas well fluid. The pump additionally includes a second coating formed on at least a portion of the plunger surface. The second coating includes a combination of tungsten carbide particles and a composition including cobalt and chromium.
Abstract:
A pump for an oil and gas well includes a barrel with a surface configured to contact oil and gas well fluid. The pump further includes a first coating formed on at least a portion of the barrel surface. The first coating includes a combination of diamond particles and a composition including nickel and phosphorous. The pump also includes a plunger with a surface configured to contact oil and gas well fluid. The pump additionally includes a second coating formed on at least a portion of the plunger surface. The second coating includes a combination of tungsten carbide particles and a composition including cobalt and chromium.
Abstract:
A method for manufacturing a fuel contacting component that facilitates reducing coke formation on at least one surface of the fuel contacting component is disclosed herein. The method includes applying a slurry composition including a powder including aluminum to the component surface, wherein the fuel contacting component is formed by an additive manufacturing process. The slurry composition is heat treated to diffuse the aluminum into the component surface. The heat treatment comprises forming a diffusion aluminide coating on the component surface, wherein the diffusion coating comprises a diffusion sublayer formed on the component surface and an additive sublayer formed on the diffusion sublayer. The method further comprises removing the additive sublayer of the diffusion aluminide coating with at least one aqueous solution such that the diffusion sublayer and the component surface are substantially unaffected, wherein the diffusion layer facilitates preventing coke formation on component surface.