Abstract:
The present invention provides various aspects for processing multiple types of substrates within cleanspace fabricators or for processing multiple or single types of substrates in multiple types of cleanspace environments particularly to form hardware based encryption devices and hardware based encryption equipped communication devices and multi-chip modules such as chiplets. In some embodiments, a collocated composite cleanspace fabricator may be capable of processing semiconductor devices into integrated circuits and then performing assembly operations to result in product in packaged form. Customized smart devices, smart phones and touchscreen devices may be fabricated in examples of a cleanspace fabricator. The assembly processing may include steps to form hardware based encryption.
Abstract:
The present invention provides apparatus for an imaging system including artificial intelligence algorithmic processing components. Imaging systems may include elements that emit electrons, photons or molecules in different examples. Artificial intelligence algorithms may be used to optimize operating parameters of the imaging systems through use of training databases and feedback of metrology obtained during processing.
Abstract:
The present disclosure provides various aspects for mobile and automated processing utilizing additive manufacturing. The present disclosure includes methods for adding line features to a roadway surface. In some examples, the line features may include wires, conduits and electronic components. In some examples, the mobile additive manufacturing apparatus may create communication means into an advanced roadway in line features, which may be used for various communications including communications to and from autonomous vehicles. The communications may involve data related to the operation of systems of autonomous vehicles. In other examples, the line features may be dynamically colored with LED components.
Abstract:
The present disclosure provides various aspects for mobile and automated processing utilizing additive manufacturing. The present disclosure includes methods for adding line features to a roadway surface. In some examples, the line features may include wires, conduits and electronic components. In some examples, the mobile additive manufacturing apparatus may create communication means into an advanced roadway in line features, which may be used for various communications including communications to and from autonomous vehicles. The communications may involve data related to the operation of systems of autonomous vehicles. In other examples, the line features may be dynamically colored with LED components.
Abstract:
The present invention provides various aspects for processing multiple types of substrates within cleanspace fabricators or for processing multiple or single types of substrates in multiple types of cleanspace environments. In some embodiments, a collocated composite cleanspace fabricator may be capable of processing semiconductor devices into integrated circuits and then performing assembly operations to result in product in packaged form. Customized smart devices, smart phones and touchscreen devices may be fabricated in examples of a cleanspace fabricator. In some examples, self-destruction devices may safely be installed into the assembly of the smart device in a cleanspace fabricator.
Abstract:
The present invention provides apparatus for an imaging system comprising a multitude of chemical emitting elements upon a substrate. In some embodiments the substrate may be approximately round with a radius of approximately one inch. Various methods relating to using and producing an imaging system of chemical emitters are disclosed.
Abstract:
The present disclosure provides various aspects for mobile and automated processing utilizing additive manufacturing. The present disclosure includes methods for the utilization of mobile and automated processing apparatus. In some examples, the mobile additive manufacturing apparatus may perform surface treatments that alter the topography of an existing surface. Other examples may involve the processing of dimensionally large layers which may be joined together to create large pieces with three dimensional shape.
Abstract:
The present invention provides various aspects of support for a fabrication facility capable of routine placement and replacement of processing tools in at least a vertical dimension relative to each other.
Abstract:
A fab can be constructed as a round or rectangular annular tube with a primary cleanspace located in-between its inner and outer tubes. The fab can be encircled with levels upon which tools can be densely packed while preserving unidirectional air flow. If only tool ports are inside, and robotics are used, primary cleanspace size can be minimized. Highly simplified robotics can be used. Tools can be removed and repaired centrally. A secondary cleanspace can be added for tool bodies. Multilevel construction enhances use of prefabricated units for fab build or maintenance. Curves or folds, applied to a conventional planar cleanroom, can construct a wide range of fab geometries, including a tubular non-annular fab. A fab can also be constructed according to a curved or non-curved sectional cut of an annular tube. A novel fab, of a non-curved section, can include a non-segmented cleanspace or have its tools vertically stacked.
Abstract:
The present invention provides various aspects for processing multiple types of substrates within cleanspace fabricators or for processing multiple or single types of substrates in multiple types of cleanspace environments. In some embodiments, a collocated composite cleanspace fabricator may be capable of processing semiconductor devices into integrated circuits and then performing assembly operations to result in product in packaged form.