Abstract:
A multiple access, spread-spectrum communication system processes a plurality of information signals received by a Radio Carrier Station (RCS) over telecommunication lines for simultaneous transmission over a radio frequency (RF) channel as a code-division-multiplexed (CDM) signal to a group of Subscriber Units (SUs). The RCS receives a call request signal that corresponds to a telecommunication line information signal, and a user identification signal that identifies a user to receive the call. The RCS includes a plurality of Code Division Multiple Access (CDMA) modems, one of which provides a global pilot code signal. The modems provide message code signals synchronized to the global pilot signal. Each modem combines an information signal with a message code signal to provide a CDM processed signal. The RCS includes a system channel controller is coupled to receive a remote call. An RF transmitter is connected to all of the modems to combine the CDM processed signals with the global pilot code signal to generate a CDM signal. The RF transmitter also modulates a carrier signal with the CDM signal and transmits the modulated carrier signal through an RF communication channel to the SUs. Each SU includes a CDMA modem which is also synchronized to the global pilot signal. The CDMA modem despreads the CDM signal and provides a despread information signal to the user. The system includes a closed loop power control system for maintaining a minimum system transmit power level for the RCS and the SUs, and system capacity management for maintaining a maximum number of active SUs for improved system performance.
Abstract:
A time division duplex (TDD) base station having a code group out of N code groups includes circuitry configured to transmit a primary synchronization code along with a plurality of secondary synchronization codes. The plurality of synchronization codes are quadrature phase shift keying modulated and number less than (log2 N)+1. The plurality of synchronization codes are used to identify the code group of the TDD base station.
Abstract:
A wireless transmit/receive unit (WTRU) communicates in a system which includes plural network protocols. The WTRU includes a circuit configured to make an initial communication request. A communication circuit establishes a communication link in response to the initial communication request in a first direction of communication and a second direction of communication. Circuitry determines a protocol preference for the first direction of communication and to establish communication in the first direction according to the protocol preference separately from communication in the second direction of communication. Circuitry determines a protocol preference for the second direction of communication and to establish communication in the second direction according to the protocol preference separately from communication in the first direction of communication. A circuit determines the availability of communication services optimal for communicating the user data in a different protocol from the protocol used as the communication link.
Abstract:
The present invention improves detection of a wireless signal sequence by using dual time domain and frequency domain processing of the signal. Received components that do not exist in the reference sequence are canceled as a noise removal process in the first domain to produce a modified signal. The modified signal is converted to the second domain for signal data detection processing in the second domain with reduced noise.
Abstract:
A base station employing a CDMA technique comprising the steps of combining a plurality of spread spectrum data signals into a combined signal having a fluctuating power level corresponding to the data signals; modulating the combined signal to produce an RF signal; measuring average power of the combined signal over a selected time period; adaptively limiting the combined signal power to a calculated level based at least in part on the measured power; and transmitting the RF signal.
Abstract:
A system and method for estimating the frequency offset experienced between carrier and local oscillator frequencies in communication systems using quadrature modulation. The invention exploits the geometry of the quadrature modulation constellation and estimates actual offset within a predefined carrier offset value without requiring data estimation.
Abstract:
A wireless spread spectrum base station has a plurality of modems. The modems produce at least one baseband channel signal and a baseband reference signal. At least one forward power controller controls a power level of the at least one baseband channel signal. A baseband signal combiner combines the at least one baseband channel and baseband reference signals. A radio frequency transmitter modulates to radio frequency and transmits the combined signal. A reference power control processor determines a desired transmit power level of the baseband reference signal to the desired transmit power level.
Abstract:
A method and apparatus is disclosed for minimizing multipath interference in wireless communication systems. A system comprises at least one transmitter and at least one receiver. In the transmitter, transmission beam parameters are dynamically modified using pseudo-random dithering or a sweeping function. The receiver receives an information signal regarding beam parameters or monitors the beam parameters and adjusts its receiving parameters accordingly to optimize its communication link. In an alternate embodiment, the receiver generates and sends feed back information to the transmitter wherein the feed back information may be used to modify beam parameters or perform other functions.
Abstract:
A method and apparatus for downloading and uploading digital data using a dual-mode wireless transmit/receive unit (WTRU). When in a first mode, the WTRU communicates with a first network, such as a universal mobile telecommunication system (UMTS). While the WTRU is in the first mode, a user of the WTRU may request the transfer of data to or from the WTRU, (i.e., a download or an upload). The user of the WTRU may also specify whether the data transfer is to occur when the WTRU is in the first mode, or in a second mode when the WTRU is communicating with a second network, such as a wireless local area network (WLAN). The data transfer may occur on a real-time basis or at a later time. In an alternative embodiment, predetermined criteria may be established for implementing automatic WTRU mode selection when data is transferred.
Abstract:
A system for balancing a signal having I and Q components includes means for cross correlating the I and Q components to produce a cross correlation product; means for adjusting the gain of each I and Q signal component in accordance with said cross correlation product; and means for adding one component with the adjustable gain of the other component to produce a phase-balanced signal.