Abstract:
A test system for testing electronic devices can include a plurality of testers and a test station. The test station can include probes to contact the devices and the tester can control testing. Test data can be received by the test station from the testers using wireless communications links.
Abstract:
A main power source supplies current through path impedance to a power terminal of an integrated circuit device under test (DUT). The DUT's demand for current at the power input terminal temporarily increases following edges of a clock signal applied to the DUT during a test as transistors within the IC switch in response to the clock signal edges. To limit variation (noise) in voltage at the power input terminal, an auxiliary power supply supplies an additional current pulse to the power input terminal to meet the increased demand during each cycle of the clock signal. The magnitude of the current pulse is a function of a predicted increase in current demand during that clock cycle, and of the magnitude of an adaption signal controlled by a feedback circuit provided to limit variation in voltage developed at the DUT's power input terminal.
Abstract:
A semiconductor wafer is cut to singulate integrated circuit dice formed on the wafer. A die pick machine then positions and orients the singulated dice on a carrier base such that signal, power and ground pads formed on the surface of each die reside at predetermined positions relative to landmarks on the carrier base the die pick machine optically identifies. With the dice temporarily held in place on the carrier base, they are subjected to a series of testing and other processing steps. Since each die's signal pads reside in predetermined locations, they can be accessed by appropriately arranged probes providing test equipment with signal access to the pads during tests. After each test, a die pick machine may replace any die that fails the test with another die, thereby improving efficiency of subsequent testing and other processing resources.
Abstract:
A transmission line includes a signal conductor and at least one varactor diode capacitively coupled to the signal conductor. The transmission line's signal path delay is a function of its shunt capacitance, and the varactor's capacitance forms a part of the transmission line's shunt capacitance. The transmission line's signal path delay is adjusted by adjusting a control voltage across the varactor diode thereby to adjust the varactor diode's capacitance.
Abstract:
In an integrated circuit assembly, know good die (KGD) are assembled on a substrate. Interconnect elements electrically connect pads on a die attached to the substrate to traces or other electrical conductors on the substrate or to pads on another die attached to the substrate. The substrate may have one or more openings, exposing pads of the die. The assembly may comprise one or more dice.
Abstract:
An interface device receives test data from a tester. A signal representing the test data is transmitted to a device under test through electromagnetically coupled structures on the interface device and the device under test. The device under test processes the test data and generates response data. A signal representing the response data is transmitted to the interface device through electromagnetically coupled structures on the device under test and the interface device.
Abstract:
A probe system for providing signal paths between an integrated circuit (IC) tester and input/output, power and ground pads on the surfaces of ICs to be tested includes a probe board assembly, a flex cable and a set of probes arranged to contact the IC's I/O pads. The probe board assembly includes one or more rigid substrate layers with traces and vias formed on or within the substrate layers providing relatively low bandwidth signal paths linking the tester to probes accessing some of the IC's pads. The flex cable provides relatively high bandwidth signal paths linking the tester to probes accessing others of the IC's pads.
Abstract:
A power supply provides power to a power terminal of an integrated circuit device under test (DUT). The DUT's demand for current at the power input terminal may temporarily increase due, for example, to state changes in the DUT. To limit variation (noise) in voltage at the power input terminal, a supplemental current is supplied to the power input terminal.
Abstract:
An emitter follower or source follower transistor is provided in the channel of a wafer test system between a DUT and a test system controller to enable a low power DUT to drive a test system channel. A bypass resistor is included between the base and emitter of the emitter follower transistor to enable bi-directional signals to be provided between the DUT channel and test system controller, as well as to enable parametric tests to be performed. The emitter follower transistor and bypass resistor can be provided on the probe card, with a pull down termination circuit included in the test system controller. The test system controller can provide compensation for the base to emitter voltage drop of the emitter follower transistor.
Abstract:
A microelectronic spring contact for making electrical contact between a device and a mating substrate and method of making the same are disclosed. The spring contact has a compliant pad adhered to a substrate of the device and spaced apart from a terminal of the device. The compliant pad has a base adhered to the substrate, and side surfaces extending away from the substrate and tapering to a smaller end area distal from the substrate. A trace extends from the terminal of the device in a coil pattern over the compliant pad to its end area, forming a helix. At least a portion of the compliant pad end area is covered by the trace, and a portion of the trace that is over the compliant pad is supported by the compliant pad. In an alternative embodiment, the pad is removed to leave a freestanding helical contact.