Abstract:
One embodiment provides for a data processing system comprising a memory device to store instructions and one or more processors to execute the instructions stored on the memory device. The instructions cause the one or more processors to provide a virtual assistant to receive voice input at a media playback device associated with the data processing system. The virtual assistant, via the one or more processors, is configured to receive a voice command at the media playback device, where the voice command is to schedule an event, then determine a user account associated with the voice command, a type of command based on context information associated with the voice command, and a target device to which media playback associated with the event is to be scheduled.
Abstract:
Techniques to use an embedded passcode within an audio ringtone to establish a secure connection for arbitrary phone relay are described. The use of an embedded passcode enables encrypted ad-hoc connections for the relay of audio of an incoming telephone call to a secondary device, such as a virtual assistant enabled smart speaker device.
Abstract:
A system and method is described for determining whether a loudspeaker device has relocated, tilted, rotated, or changed environment such that one or more parameters for driving the loudspeaker may be modified and/or a complete reconfiguration of the loudspeaker system may be performed. In one embodiment, the system may include a set of sensors. The sensors provide readings that are analyzed to determine 1) whether the loudspeaker has moved since a previous analysis and/or 2) a distance of movement and/or a degree change in orientation of the loudspeaker since the previous analysis. Upon determining the level of movement is below a threshold value, the system adjusts previous parameters used to drive one or more of the loudspeakers. By adjusting previous parameters instead of performing a complete recalibration, the system provides a more efficient technique for ensuring that the loudspeakers continue to produce accurate sound for the listener.
Abstract:
In one aspect a device-side audio handling input/output unit (DIO) of a hardware device writes audio data generated by the hardware device within a ring buffer. An input provided by a user for activation of a software program is received, and a notification that the software program is ready to accept the audio data is generated. A system-side audio handling input/output unit (SIO) additionally provides past audio data from the ring buffer to the software program. Other aspects also are described.
Abstract:
An audio appliance includes an oscillatable diaphragm, a first heat-dissipation unit, a second heat-dissipation unit, and a control unit. The first heat-dissipation unit dissipates heat at a first rate and the second heat-dissipation unit dissipates heat at a second rate. The control unit can receive an indication of a temperature of the first heat-dissipation unit and an indication of a temperature of the second heat-dissipation unit. The control unit provides oscillation control of the oscillatable diaphragm to maintain the temperature of the first heat-dissipation unit below a first threshold and/or to maintain the temperature of the second heat-dissipation unit below a second threshold. The control unit can provide the oscillation control responsive to each of the indication of the temperature of the first heat-dissipation unit and the indication of the temperature of the second heat-dissipation unit exceeding a respective threshold.
Abstract:
An unknown content audio signal that is input to an audio power amplifier and speaker that have a known gain and speaker sensitivity, is buffered. A portion of the buffered signal is provided to an automatic content recognition (ACR) system, and then a content identifier, of the unknown content signal, as provided by the ACR system is received. Previously determined metadata is also received, for a reference audio content signal that has been assigned to the content identifier. The metadata includes a previously determined reference measure of an audio signal characteristic for the reference content. An input measure of the audio signal characteristic is computed, for the unknown content, and compared with the reference measure. On that basis, and also based on the known gain and speaker sensitivity, at least one of a scalar gain and spectral shaping filtering that is being applied to the unknown content is adjusted. Other embodiments are also described and claimed.
Abstract:
An audio emission device and an audio capture device that may respectively emit and capture sound within a listening area is described. The audio emission device may produce one or more primary audio beams in the listening area. Each of the primary audio beams may be formed by weighting a set of modal beam patterns. Separate orthogonal test signals may be injected into each modal beam pattern. Based on these separate orthogonal test signals, the individual modal beam patterns may be extracted from a detected sound signal, produced by the audio capture device, such that the contribution from each of these modal patterns in the detected sound signal may be determined. Utilizing the contributions from each modal beam pattern in the detected sound signal, the spatial relationship (e.g., distance and/or orientation/angle) between the audio emission device and the audio capture device may be determined.
Abstract:
An unknown content audio signal that is input to an audio power amplifier and speaker that have a known gain and speaker sensitivity, is buffered. A portion of the buffered signal is provided to an automatic content recognition (ACR) system, and then a content identifier, of the unknown content signal, as provided by the ACR system is received. Previously determined metadata is also received, for a reference audio content signal that has been assigned to the content identifier. The metadata includes a previously determined reference measure of an audio signal characteristic for the reference content. An input measure of the audio signal characteristic is computed, for the unknown content, and compared with the reference measure. On that basis, and also based on the known gain and speaker sensitivity, at least one of a scalar gain and spectral shaping filtering that is being applied to the unknown content is adjusted. Other embodiments are also described and claimed.
Abstract:
Method of audio power reduction and thermal mitigation using psychoacoustic techniques starts by receiving a decoded audio signal in a reproduction system. Decoded audio signal is a signal that is decompressed and to be played back by a speaker. A masking curve is generated based on psychoacoustic models and the decoded audio signal. The masking curve is applied to the decoded audio signal to remove unheard frequencies and to generate a power-reduced audio signal. Other embodiments are also described.