Abstract:
An electronic device may have a conductive housing with an antenna window. Antenna structures may be mounted adjacent to the antenna window. The antenna structures may have a dielectric carrier. Patterned metal antenna traces may be formed on the surface of the dielectric carrier. A proximity sensor may be formed from a flexible printed circuit mounted on the dielectric carrier. The flexible printed circuit may have a tail that contains a transmission line for feeding the antenna structures. The transmission line may include a positive signal conductor that is maintained at a desired distance from the conductive housing using a polymer sheet. A portion of the antenna structures may protrude between a microphone and a camera module. Plastic camera module housing structures may have an inner surface coated with a shielding metal. A U-shaped conductive fabric layer may be used as a grounding structure.
Abstract:
Printed circuit substrates may be formed from rigid printed circuit material or flexible sheets of polymer. Printed circuit substrates may have conductive traces. Integrated circuits, touch sensor electrode structure, sensors, and other components may be mounted to the conductive traces. Connectors such as board-to-board connectors may be used to couple printed circuit substrates together. To hold the connectors together and to provide electromagnetic shielding, printed circuits and connectors may be surrounded by printed circuit connector securing structures. The printed circuit connector securing structures may have one or more strips of conductive fabric tape wrapped around the connectors. Metal stiffening members may be attached to opposing ends of the strip of conductive tape to facilitate removal of the tape for rework or repair. An additional strip of tape may be used to help secure the wrapped conductive tape. The additional strip may have a tab to facilitate removal.
Abstract:
Pressure indicator pressure sensitive adhesive may contain microspheres that burst and release indicator when subjected to pressure and thereby produce a detectable indication of how much pressure has been applied when forming an adhesive joint between opposing structures. Electronic device structures can be assembled using the pressure indicator pressure sensitive adhesive. A camera or other sensor may monitor joint formation. The camera can gather infrared image data, visible light image data, or ultraviolet light image data. Sensor data such as magnetic or ultrasonic sensor data can also be collected on an adhesive joint. Joint inspection can be performed on test structures and production structures and corresponding adjustments made to the joint formation process. Positioners and other equipment that compresses the pressure indicator pressure sensitive adhesive can be adjusted in real time or calibrated using information about the condition of the pressure indicator pressure sensitive adhesive.
Abstract:
Printed circuit substrates may be formed from rigid printed circuit material or flexible sheets of polymer. Printed circuit substrates may have conductive traces. Integrated circuits, touch sensor electrode structure, sensors, and other components may be mounted to the conductive traces. Connectors such as board-to-board connectors may be used to couple printed circuit substrates together. To hold the connectors together and to provide electromagnetic shielding, printed circuits and connectors may be surrounded by printed circuit connector securing structures. The printed circuit connector securing structures may have one or more strips of conductive fabric tape wrapped around the connectors. Metal stiffening members may be attached to opposing ends of the strip of conductive tape to facilitate removal of the tape for rework or repair. An additional strip of tape may be used to help secure the wrapped conductive tape. The additional strip of tapc may have a tab to facilitate removal.
Abstract:
A portable computing device is disclosed. The portable computing device can take many forms such as a laptop computer, a tablet computer, and so on. The portable computing device can include at least a single piece housing. The single piece housing can be machined from a single billet of material, such as a billet of aluminum. The single piece housing can include ledges with a surface receiving a trim bead and a cover. Corner brackets can be attached to the single piece housing to improve the damage resistance of the housing.
Abstract:
An electronic device may have a flexible display that overlaps an axis. The display may be supported by a housing. The housing may have first and second portions that rotate relative to each other about the axis. The housing may be placed in an unfolded configuration to support the display in a planar state. The housing may also be placed in a folded configuration by rotating the first and second portions relative to each other. A hinge mechanism may be used to ensure adequate separation between the first and second portions when the housing is bent. Movable flaps may be retracted when the housing is bent to create room for a bent portion of the display.
Abstract:
An electronic device may have a flexible display that overlaps an axis. The display may be supported by a housing. The housing may have first and second portions that rotate relative to each other about the axis. The housing may be placed in an unfolded configuration to support the display in a planar state. The housing may also be placed in a folded configuration by rotating the first and second portions relative to each other. A hinge mechanism may be used to ensure adequate separation between the first and second portions when the housing is bent. Movable flaps may be retracted when the housing is bent to create room for a bent portion of the display.
Abstract:
Systems and methods for providing localized tactile output and systems and methods for obtaining localized physical characteristic information are disclosed. An electronic device can include a friction transducer configured to augment and/or detect friction between a surface of an electronic device and an object in contact with that electronic device. The electronic device may also include a force transducer configured to detect the force with which an object contacts a display. The force transducer may also provide mechanical output. The electronic device can also include a thermal transducer to augment and/or detect the temperature of various locations on a display.
Abstract:
Disclosed herein are methods and systems for providing haptic output on an electronic device. In some embodiments, the electronic device includes an actuator configured to move in a first direction. The electronic device also includes a substrate coupled to the actuator. When the actuator moves in the first direction, the substrate or a portion of the substrate, by virtue of being coupled to the actuator, moves in a second direction. In some implementations, the movement of the substrate is perpendicular to the movement of the actuator.
Abstract:
An electronic device may have a display mounted in a housing. The display may have layers such as polarizer layers, a color filter layer, and a thin-film transistor layer. Display layers such as color filter layers and thin-film-transistor layers may have glass substrates. Notches or other openings may be formed in the layers of a display. For example, a notch with a curved chamfered edge may be formed in a lower end of a thin-film-transistor layer. A component such as a button may overlap the notch. Structures such as sensors, cameras, acoustic components, and other electronic components, buttons, communications path structures such as flexible printed circuit cables and wire bonding wires, and housing structures may be received within a display layer notch.