Abstract:
Techniques for modeling significant locations are described. A significant location can be a location that is significant to a user of a mobile device for a variety of reasons. The mobile device can determine that a place or region is a significant location upon determining that, with sufficient certainty, the mobile device has stayed at the place or region for a sufficient amount of time. The mobile device can construct a state model that is an abstraction of one or more significant locations. The state model can include states representing the significant locations, and transitions representing movement of the mobile device between the locations. The mobile device can use the state model to provide predictive user assistance.
Abstract:
Systems, methods, and program products for determining a location of a mobile device using a location application programming interface (API) are described. A mobile device can receive an input requesting the mobile device to monitor entry into and exit from a significant location. The mobile device can call a start-monitoring instance function of an object of a location manager class as declared in the API to start monitoring, and call a stop-monitoring instance function of the object as declared in the API to stop monitoring. The mobile device can store the entry and exit, or provide a record of the entry or exit to a function that is conformant to the API for performing various tasks.
Abstract:
Systems, methods, and program products for providing services to a user by a mobile device based on the user's daily routine of movement. The mobile device determines whether a location cluster indicates a significant location for the user based on one or more hints that indicate an interest of the user in locations in the cluster. The mobile device can perform adaptive clustering to determine a size of area of the significant location based on how multiple locations converge in the location cluster. The mobile device can provide location-based services for calendar items, including predicting a time of arrival at an estimated location of a calendar item. The mobile device can provide various services related to a location of the mobile device or a significant location of the user through an application programming interface (API).
Abstract:
Techniques for lifestyle-based social groups are described. A user device can learn movement patterns of the user device. Based on the movement pattern, and a user activity history, a computer system can determine a lifestyle of a user, or a meaning of a location. The system can create a social group based on the lifestyle and the meaning of location. The system can designate the lifestyle or meaning as a theme of the social group. The social group can be an ad hoc social network. For example, the social group can be created without an explicit user request, can be anonymous, and can be lifestyle and location based.
Abstract:
Systems, methods, and program products for providing services to a user by a mobile device based on the user's daily routine of movement. The mobile device determines whether a location cluster indicates a significant location for the user based on one or more hints that indicate an interest of the user in locations in the cluster. The mobile device can perform adaptive clustering to determine a size of area of the significant location based on how multiple locations converge in the location cluster. The mobile device can provide location-based services for calendar items, including predicting a time of arrival at an estimated location of a calendar item. The mobile device can provide various services related to a location of the mobile device or a significant location of the user through an application programming interface (API).
Abstract:
Described herein are techniques to enable a mobile device to perform multi-source estimation of an altitude for a location. A baseline altitude may be determined at ground level for a location and used to calibrate a barometric pressure sensor on the mobile device. The calibrated barometric pressure sensor can then estimate changes in altitude relative to ground level based on detected pressure differentials, allowing a relative altitude to ground to be determined. Baseline calibration for the barometric sensor calibration can be performed to determine an ambient ground-level barometric pressure.
Abstract:
Systems, methods, and program products for providing services to a user by a mobile device based on the user's daily routine of movement. The mobile device determines whether a location cluster indicates a significant location for the user based on one or more hints that indicate an interest of the user in locations in the cluster. The mobile device can perform adaptive clustering to determine a size of area of the significant location based on how multiple locations converge in the location cluster. The mobile device can provide location-based services for calendar items, including predicting a time of arrival at an estimated location of a calendar item. The mobile device can provide various services related to a location of the mobile device or a significant location of the user through an application programming interface (API).
Abstract:
Computer-implemented methods, computer-readable storage media storing instructions and computer systems for labeling significant locations based on contextual data can be implemented to perform operations that include determining a location of a computing device, and determining a label for the determined location based on contextual data associated with the significant location. The location can be a significant location that has meaning to a user of the device.
Abstract:
Computer-implemented methods, computer-readable storage media storing instructions and computer systems for labeling significant locations based on contextual data can be implemented to perform operations that include determining a location of a computing device, and determining a label for the determined location based on contextual data associated with the significant location. The location can be a significant location that has meaning to a user of the device.
Abstract:
Systems, methods, and program products for providing services to a user by a mobile device based on the user's daily routine of movement. The mobile device determines whether a location cluster indicates a significant location for the user based on one or more hints that indicate an interest of the user in locations in the cluster. The mobile device can perform adaptive clustering to determine a size of area of the significant location based on how multiple locations converge in the location cluster. The mobile device can provide location-based services for calendar items, including predicting a time of arrival at an estimated location of a calendar item. The mobile device can provide various services related to a location of the mobile device or a significant location of the user through an application programming interface (API).