Abstract:
Some embodiments provide a navigation application. The navigation application includes an interface for receiving data describing junctures along a route from a first location on a map to a second location on the map. The data for each juncture includes a set of angles at which roads leave the juncture. The navigation application includes a juncture decoder for synthesizing, from the juncture data, instruction elements for each juncture that describe different aspects of a maneuver to be performed at the juncture. The navigation application includes an instruction generator for generating at least two different instruction sets for a maneuver by combining one or more of the instruction elements for the juncture at which the maneuver is to be performed. The navigation application includes an instruction retriever for selecting one of the different instruction sets for the maneuver according to a context in which the instruction set will be displayed.
Abstract:
Some embodiments of the invention provide an address harvester that harvests addresses from one or more applications executing on a device. Some embodiments use the harvested addresses to facilitate the operation of one or more applications executing on the device. Alternatively, or conjunctively, some embodiments use the harvested addresses to facilitate the operation of one or more applications executing on another device than the one used for harvesting the addresses. In some embodiments, a prediction system uses the harvested addresses to formulate predictions, which it then provides to the same set of applications from which it harvested the addresses in some embodiments.
Abstract:
Some embodiments provide a navigation application. The navigation application includes an interface for receiving data describing junctures along a route from a first location on a map to a second location on the map. The data for each juncture includes a set of angles at which roads leave the juncture. The navigation application includes a juncture decoder for synthesizing, from the juncture data, instruction elements for each juncture that describe different aspects of a maneuver to be performed at the juncture. The navigation application includes an instruction generator for generating at least two different instruction sets for a maneuver by combining one or more of the instruction elements for the juncture at which the maneuver is to be performed. The navigation application includes an instruction retriever for selecting one of the different instruction sets for the maneuver according to a context in which the instruction set will be displayed.
Abstract:
For a mobile device having a display area, a method of displaying instructional signs of a route in the display area is described. The method receives selection of a route having several junctures. The route includes several displayable signs for showing a set of maneuver instructions for at least some of junctures of the route. The method tracks the current location of the device as the device is moving. The method displays different signs by sliding the signs in and out of the display area based on the current location of the device.
Abstract:
Some embodiments provide a navigation application. The navigation application includes an interface for receiving data describing junctures along a route from a first location to a second location. The data for each juncture comprises a set of angles at which roads leave the juncture. The navigation application includes a juncture simplifier for simplifying the angles for the received junctures. The navigation application includes an arrow generator for generating at least two different representations of the simplified juncture. The representations are for use in displaying navigation information describing a maneuver to perform at the juncture during the route. The navigation application includes an arrow selector for selecting one of the different representations of the simplified juncture for display according to a context in which the representation will be displayed.
Abstract:
Some embodiments provide a method for an application that operates on a mobile device. The method predicts several likely destinations for a vehicle to which the mobile device is connected based on data from a several different sources. The method generates, for a display screen of the vehicle, a display that includes the several likely destinations. In some embodiments, the method receives a first type of input through a control of the vehicle to select one of the likely destinations, and enters a turn-by-turn navigation mode to the selected destination in response to the received input. In some embodiments, the display is for a first destination of the several likely destinations. The method receives a second type of input through a control of the vehicle to step through the set of likely destinations, and generates a display for a second destination in response to the input.
Abstract:
A method of displaying navigational instructions when a navigation application is running in a background mode of an electronic device is provided. The method displays a non-navigation application in the foreground on a display screen of the electronic device. The method displays a navigation bar without a navigation instruction when the device is not near a navigation point. The method displays the navigation bar with a navigation instruction when the device is near a navigation point. In some embodiments, the method receives a command to switch from running the navigation application in the foreground to running another screen view in the foreground. The method then runs the other screen view in the foreground while displaying a navigation status display on an electronic display of the device.
Abstract:
Some embodiments provide a device that stores a novel navigation application. The application in some embodiments includes a user interface (UI) that has a display area for displaying a two-dimensional (2D) navigation presentation or a three-dimensional (3D) navigation presentation. The UI includes a selectable 3D control for directing the program to transition between the 2D and 3D presentations.
Abstract:
Some embodiments provide a navigation application that presents a novel navigation presentation on a device. The application identifies a location of the device, and identifies a style of road signs associated with the identified location of the device. The application then generates navigation instructions in form of road signs that match the identified style. To generate the road sign, the application in some embodiments identifies a road sign template image for the identified style, and generates the road sign by compositing the identified road sign template with at least one of text instruction and graphical instruction. In some embodiments, the road sign is generated as a composite textured image that has a texture and a look associated with the road signs at the identified location.
Abstract:
Some embodiments provide a navigation application. The navigation application includes an interface for receiving data describing junctures along a route from a first location on a map to a second location on the map. The data for each juncture includes a set of angles at which roads leave the juncture. The navigation application includes a juncture decoder for synthesizing, from the juncture data, instruction elements for each juncture that describe different aspects of a maneuver to be performed at the juncture. The navigation application includes an instruction generator for generating at least two different instruction sets for a maneuver by combining one or more of the instruction elements for the juncture at which the maneuver is to be performed. The navigation application includes an instruction retriever for selecting one of the different instruction sets for the maneuver according to a context in which the instruction set will be displayed.