Abstract:
A fingerprint sensing system. The fingerprint sensing system includes: at least one sensor; at least one display device; at least one application processor; and at least one secure enclave processor. The application processor(s) receives fingerprint data from the sensor(s) and provides the fingerprint data to the secure enclave processor(s). The secure enclave processor(s) decodes the fingerprint data and provides a signal indicative of at least one matched node. The application processor(s), responsive to receipt of the signal indicative of the matched node(s), presents at least a portion of a synthetic fingerprint image via at least one display device corresponding to the matched node(s).
Abstract:
Some embodiments provide an autonomous navigation system which can navigate a vehicle through an environment according to a selected comfort profile, where the comfort profile associates a particular set of occupant profiles and a particular set of driving control parameters, so that the vehicle is navigated based on the particular set of driving control parameters. The comfort profile is selected based on a determined correlation between the occupants detected in the vehicle interior and the occupants specified by the set of occupant profiles included in the comfort profile. The driving control parameters included in a comfort profile can be adjusted based on monitoring occupants of the vehicle for feedback when the vehicle is being autonomously navigated according to the comfort profile.
Abstract:
An electronic device provides a tracking report to a computing device that is located remotely from the electronic device. The tracking report may include location information that identifies the geographical location of the electronic device, and device user information that identifies the user of the electronic device. The electronic device acquires location information for the tracking report through a location awareness capability such as a global positioning system. The electronic device acquires user identification information for the tracking report through a biometric scanning component, such as a finger print sensor or other device that senses biometric properties when a user is touching or in close proximity to the device.
Abstract:
A sequence of biometric data images is received, such as, for example, a sequence of fingerprint images, and a set of biometric data images is selected from the sequence of images. The set of images can include one or more segments of at least one image in the sequence of images. One or more portions of at least one image of biometric data in the set of images can be selected to be included in the unified image of biometric data. The unified image of biometric data can be constructed using the one or more portions of the at least one image of biometric data. If the unified image of biometric data is not complete, a user can be prompted for one or more additional images of biometric data.
Abstract:
An online store can transmit an online account token to an electronic device or to a biometric sensing device after a user successfully enters his or her account password. The electronic device or the biometric sensing device can countersign the online account token when the one or more biometric images match reference biometric images and the account password matches user identifier data stored in the electronic device or in the biometric sensing device. The countersigned online account token can then be transmitted to the online store. The user can then make one or more purchases after the online store receives the countersigned online account token.
Abstract:
A scannable object is sensed and scanned. A map is constructed based on the scan results. The map is compared to one or more stored templates. Results of the comparison are provided. In some implementations, a secured processor may construct the map and may provide reduced resolution (and/or other versions that contain less information) versions of the map and/or the stored templates to one or more other processors. The one or more other processors may determine a match-set based on matching between the reduced resolution map and stored templates. The secured processor may then identify whether or not a match exists between the map and any stored template based on the match-set.
Abstract:
A method includes receiving fingerprint image data at a fingerprint recognition sensor, where the fingerprint image data are associated with an authorized user. The fingerprint image data are transformed into a substantially rotationally invariant representation, which is maintained in a database of enrolled fingerprint information. Processed fingerprint image data from an accessing user are compared with the substantially rotationally invariant representation of the fingerprint image data from the authorized user.
Abstract:
A computing device may determine to execute a secured function. The computing may obtain a biometric of the user of the computing device utilizing one or more biometric sensors associated with the computing device, determine that the biometric matches the biometric of a user authorized to utilize the secured function, and execute the secured function. Whenever during execution of the secured function the computing device determines that the biometric sensor no longer detects the biometric of the user, the computing device may cease execution of the secured function.
Abstract:
A fingerprint sensing system. The fingerprint sensing system includes: at least one sensor; at least one display device; at least one application processor; and at least one secure enclave processor. The application processor(s) receives fingerprint data from the sensor(s) and provides the fingerprint data to the secure enclave processor(s). The secure enclave processor(s) decodes the fingerprint data and provides a signal indicative of at least one matched node. The application processor(s), responsive to receipt of the signal indicative of the matched node(s), presents at least a portion of a synthetic fingerprint image via at least one display device corresponding to the matched node(s).
Abstract:
A method includes receiving fingerprint image data at a fingerprint recognition sensor, where the fingerprint image data are associated with an authorized user. The fingerprint image data are transformed into a substantially rotationally invariant representation, which is maintained in a database of enrolled fingerprint information. Processed fingerprint image data from an accessing user are compared with the substantially rotationally invariant representation of the fingerprint image data from the authorized user.