Abstract:
Various embodiments of a respirator that includes a harness, a mask body, and an exhalation valve are disclosed. The exhalation valve can include a valve seat and a flexible flap that is in engagement with the valve seat. The flexible flap can have one or more materials that can cause the flap to flash when moving from a closed position to an open position or vice versa. The flashing valve can make it easier for a user to ascertain whether the valve is operating properly.
Abstract:
Various embodiments of a respirator that includes a harness, a mask body, and an exhalation valve are disclosed. The exhalation valve can include a valve seat and a flexible flap that is in engagement with the valve seat. The flexible flap can have one or more materials that can cause the flap to flash when moving from a closed position to an open position or vice versa. The flashing valve can make it easier for a user to ascertain whether the valve is operating properly.
Abstract:
A method of making an adhesive article is described comprising melt extruding a core film layer comprising a composition comprising at least 50% of a polylactic acid polymer. The method further comprises melt extruding an adhesive layer on a major surface of the core film layer such that regions of interdiffusion are present between the core film layer and adhesive layer. The adhesive layer may comprise C1-C10 (meth)acrylic acid or ester thereof, vinyl acetate, ethylene vinyl acetate, hydrolysed polyvinyl alcohol and combinations thereof. The adhesive layer may also be a pressure sensitive adhesive. The method further comprises melt extruding a release film layer on an opposing major surface of the core film layer. The layers are sequentially extruded or co-extruded and can be uniaxially or biaxially oriented. Articles comprising a core film layer comprising a composition comprising at least 50% of a polylactic acid polymer and an adhesive layer disposed on a major surface of the core layer are also described.
Abstract:
A multilayer optical film has a packet of microlayers that selectively reflect light by constructive or destructive interference to provide a first reflective characteristic. At least some of the microlayers are birefringent. A stabilizing layer attaches to and covers the microlayer packet proximate an outer exposed surface of the film. Heating element(s) can physically contact the film to deliver heat to the packet through the stabilizing layer by thermal conduction, at altered region(s) of the film, such that the first reflective characteristic changes to an altered reflective characteristic in the altered region(s) to pattern the film. The stabilizing layer provides sufficient heat conduction to allow heat from the heating elements to change (e.g. reduce) the birefringence of the birefringent microlayers disposed near the outer exposed surface in the altered region(s), while providing sufficient mechanical support to avoid substantial layer distortion of the microlayers near the outer exposed surface in the altered region(s).
Abstract:
A multilayer optical film has a packet of microlayers that selectively reflect light by constructive or destructive interference to provide a first reflective characteristic. At least some of the microlayers are birefringent. A stabilizing layer attaches to and covers the microlayer packet proximate an outer exposed surface of the film. Heating element(s) can physically contact the film to deliver heat to the packet through the stabilizing layer by thermal conduction, at altered region(s) of the film, such that the first reflective characteristic changes to an altered reflective characteristic in the altered region(s) to pattern the film. The stabilizing layer provides sufficient heat conduction to allow heat from the heating elements to change (e.g. reduce) the birefringence of the birefringent microlayers disposed near the outer exposed surface in the altered region(s), while providing sufficient mechanical support to avoid substantial layer distortion of the microlayers near the outer exposed surface in the altered region(s).
Abstract:
A reflective film includes interior layers that selectively reflect light by constructive or destructive interference, the layers extending from a first to a second zone of the film. In the first zone, the layers operate substantially as a reflective polarizer; in the second zone they operate substantially as a mirror. The layers may thus provide a first reflective characteristic in the first zone wherein normally incident light of one polarization state is substantially reflected and normally incident light of an orthogonal polarization state is substantially transmitted, and a second reflective characteristic in the second zone wherein normally incident light of any polarization state is substantially reflected. The film may have a first thickness in the first zone that is substantially the same as a second thickness in the second zone. Alternatively, the second thickness may be substantially less than the first thickness. Related methods, articles, and systems are also disclosed.
Abstract:
A reflective film includes interior layers arranged to selectively reflect light by constructive or destructive interference, the layers extending from a first zone to a second zone of the film. The film has a first thickness and the interior layers provide a first reflective characteristic in the first zone; the film has a second thickness and the interior layers provide a second reflective characteristic in the second zone. The difference between the first and second reflective characteristics is not substantially attributable to any difference between the first and second thicknesses, which difference may be zero. Rather, the difference in the reflective characteristics is substantially attributable to reduced birefringence of at least some of the interior layers in one zone relative to the other zone. The film may also incorporate absorbing agents to assist in the manufacture or processing of the film. Related methods and articles are also disclosed.
Abstract:
Tags are made from optical films to provide a pattern that is inconspicuous to ordinary observers, but that is detectable by a camera or other imaging device. The pattern is provided by first and second portions of a patterned layer, the first portions selectively filtering at least a portion of blue visible light from other visible light wavelengths. Filtering in the portion of the blue region helps make the pattern inconspicuous. The tags may also include an indicia layer configured to mark a location of the pattern, and a contrast enhancing layer disposed behind the patterned layer and configured to enhance a contrast of the pattern. In some cases, the first portions of the patterned layer may filter optical wavelengths other than blue, such as near-infrared light. The pattern may comprise machine-readable information, e.g., a linear bar code or a 2-D bar code. Associated methods and systems are also disclosed.
Abstract:
A multilayer optical film (130) has a packet of microlayers that selectively reflect light by constructive or destructive interference to provide a first reflective characteristic. At least some of the microlayers are birefringent. A stabilizing layer attaches to and covers the microlayer packet proximate an outer exposed surface of the film Heating elements (122) can physically contact the film to deliver heat to the packet through the stabilizing layer by thermal conduction, at altered regions of the film, such that the first reflective characteristic changes to an altered reflective characteristic in the altered regions to pattern the film The stabilizing layer provides sufficient heat conduction to allow heat from the heating elements to change (e.g. reduce) the birefringence of the birefringent microlayers disposed near the outer exposed surface in the altered regions, while providing sufficient mechanical support to avoid substantial layer distortion of the microlayers near the outer exposed surface in the altered regions.
Abstract:
A reflective film includes a first optical stack that provides a first reflective characteristic and a second optical stack that provides a second reflective characteristic. The optical stacks also have first and second absorptive characteristics that are suitable to absorptively heat the respective stacks upon exposure to light including a write wavelength while maintaining the structural integrity of the stacks. The absorptive heating can change the first and second reflective characteristics to third and fourth reflective characteristics, respectively. A blocking layer that at least partially blocks light of the write wavelength may also be provided between the optical stacks to permit absorptive heating of any selected one of the optical stacks. The reflective characteristics of the optical stacks can thus be independently modified in any desired patterns by appropriate delivery of light beams that include the write wavelength.