Abstract:
The present invention relates to a method of manufacturing a semiconductor package capable of simplifying a process and remarkably reducing a production cost by including the steps of: preparing a different bonded panel including at least one metal layer; forming a pad unit electrically connected to the metal layer; mounting a semiconductor chip over the different bonded panel to be electrically connected to the pad unit; sealing the semiconductor chip; forming a rearrangement wiring layer by etching the metal layer; and forming an external connection unit electrically connected to the rearrangement wiring layer.
Abstract:
A three-dimensional nanostructures and a method for fabricating the same, and more particularly to three-dimensional structures of various shapes having high aspect ratio and uniformity in large area and a method of fabricating the same by attaching a target material to the outer surface of patterned polymer structures using an ion bombardment phenomenon occurring during a physical ion etching process to form target material-polymer composite structures, and then removing the polymer from the target material-polymer structures. A three-dimensional nanostructures with high aspect ratio and uniformity can be fabricated by a simple process at low cost by using the ion bombardment phenomenon occurring during physical ion etching. Also, nanostructures of various shapes can be easily fabricated by controlling the pattern and shape of polymer structures. In addition, uniform fine nanostructures having a thickness of 10 nm or less can be formed in a large area.
Abstract:
The present invention relates to a pre-coding method for spatial multiplexing, comprising the steps of: performing a beam search for beam forming with a receiver device equipped with multiple antennas to perform pre-coding for spatial multiplexing in a transmitter device equipped with multiple antennas; transmitting a first packet including at least one or more training sequences to the receiver device after completion of said beam search; receiving, from the receiver device, a second packet including feedback information for pre-coding, determined in the receiver device by using the training sequences; and performing pre-coding for spatial multiplexing, onto the data stream to be transmitted to the receiver device, by using the pre-coding matrix calculated on the basis of the feedback information.
Abstract:
A display device includes a first electrode layer, a color switching layer which is disposed on the first electrode layer, a second electrode layer which is disposed on the color switching layer and a color filter layer which is disposed on the second electrode layer. The color switching layer includes a first color cell, which transmits incident light or changes incident light to a first color light, a second color cell, which transmits incident light or changes incident light to a second color light and a third color cell, which transmits incident light or changes incident light to a third color light. The color filter layer includes a first filter which transmits a cyan light, a second filter which transmits a magenta light and a third filter which transmits a yellow light.
Abstract:
A method of changing channels of a first device in a wireless network, which includes a first coordinator and at least one device, comprises searching whether another channel other than a first channel which is currently used in the wireless network is available, changing the first channel to a second channel among at least one or more available channels as a result of the searching step, and transmitting data to a second device or receiving data from the second device through the second channel.
Abstract:
Disclosed is an electrochromic material including a compound represented by Chemical Formula 1 and an electrochromic device including the electrochromic material. In Chemical Formula 1, R1, R2, L1, and L2 are as defined in the detailed description.
Abstract:
In a light sensing element having simplified structure, an array substrate having the light sensing element and an LCD apparatus having the light sensing element, the light sensing element includes a first electrode, a control electrode and a second electrode. An alternating bias voltage is applied to the first electrode. An off voltage is applied to the control electrode. The second electrode outputs a light-induced leakage current based on an externally provided light and the bias voltage. Therefore, the array substrate includes one light sensing switching element corresponding to one pixel so that structure of the array substrate is simplified and opening ratio is increased.
Abstract:
A method of manufacturing a wafer level package including: preparing a substrate wafer including a plurality of pads formed on a bottom surface, a plurality of chips positioned on a top surface, and dicing lines for dividing the chips; forming external connection units on the pads; coating resin on the dicing lines by positioning masks on the substrate wafer to expose only the dicing lines; removing the masks; encapsulating the chips positioned between the resin by coating the chips with encapsulant and cutting a wafer level package along the dicing lines coated with the resin into units.
Abstract:
A sub-mount, a light emitting diode package, and a method of manufacturing thereof are disclosed. A sub-mount, on which multiple light emitting diodes are mounted, can include a multiple number of metal bodies on which the light emitting diodes are respectively mounted, and an oxide wall interposed between the metal bodies such that the adjacent metal bodies are supported by each other but electrically disconnected from each other. By utilizing certain embodiments of the invention, a high heat releasing effect may be obtained, and manufacturing costs may be reduced.
Abstract:
A method for controlling data transmission in a station in a wireless communication network, the method including: receiving feedback information including error information including a signal to noise ratio (SNR) from a target station, the error information being measured by the target station; and controlling transmission parameters of the transmit data in a transmitting station based on the error information, wherein controlling the transmission parameters includes: increasing the transmit power when the SNR is lower than a predetermined value; initiating a beam-tracking process when the SNR is still lower than the predetermined value after increasing the transmit power; and decreasing a data transmission rate when the SNR is still lower than the predetermined value after initiating the beam-tracking process.