Abstract:
The present invention discloses a non-invasive method of measuring skin thickness and blood glucose concentration of a subject by a Raman system. The advantage of the present invention is that a single Raman spectrum is used to measure both the skin thickness and glucose concentration. The skin thickness and Raman intensity retrieved from the same Raman spectrum are both utilized to yield a more accurate blood glucose concentration. The present invention also discloses a Raman system for measuring physiological data of a subject. It comprises a Raman spectroscopic unit and a signal processing unit.
Abstract:
A system and method of detecting a posture of at least one predetermined part of an object comprising the steps of extracting a first object shape from a first image taken by a first image sensor, computing a characteristic dimension value of the predetermined part within a predetermined region of the first object shape, constructing a mask based on the characteristic dimension value, extracting a profile of the predetermined part from the first object shape by applying the mask on the first object shape, and identifying at least one predefined feature point in the profile of the predetermined part, thereby detecting the posture of the predetermined part is disclosed.
Abstract:
A method for performing high speed mode detection of a carrier frequency offset (CFO) includes receiving a Zadoff-Chu signal at a wireless device, and determining a plurality of correlation peaks based on a correlation of the signal with one or more known Zadoff-Chu sequences. The method includes determining a carrier frequency offset (CFO) associated with the signal based on a phases associated with the plurality of correlation peaks and a coarse CFO estimate. The coarse CFO estimate may be determined based on a squared power ratio of particular pairs of the plurality of correlation peaks and the phases may be used to remove ambiguity associated with the coarse CFO estimate.
Abstract:
Systems and methods which provide generation of image depth maps which more accurately represent the local depth discontinuity within images through use of image global depth maps adapted based upon image global motion and/or localized depth analysis utilizing relative relationships of attributes across depth discontinuities in the image are disclosed. Embodiments utilize a full global depth map which is larger than or equal to the image being converted in order to accommodate image global motion, in generating an image global depth map. In operation according to embodiments, an image global depth map is identified within the full global depth map, such as based upon global motion within the image. Localized depth analysis, using pixel attribute relative relationships, is applied with respect to the image global depth map according to embodiments to generate an image depth map which more accurately reflects the local depth discontinuities within the image.
Abstract:
Systems and methods which provide an adaptive unified performance management (AUPM) framework for interacting with disparate network elements using techniques adaptive to operational conditions to provide network performance adaptive root cause analysis (ARCA) are shown. An AUPM framework of embodiments of the invention implements a proxy based architecture in which a plurality of proxies are utilized to connect to and perform data communication with the disparate network elements. Centralized performance management is in communication with the proxies to obtain and unify network element data for performance monitoring, alarm reporting, and/or root cause analysis. The performance monitoring, alarm reporting, and root cause analysis provided by centralized performance management of embodiments herein implements adaptive cluster-based analysis to provide robust operation adapted to accommodate various operational scenarios, such as may include time varying conditions and learning based configuration.
Abstract:
A methods for performing a cell search in multiple antenna wireless systems using a plurality of spatial filters is disclosed, and includes applying a plurality of spatial filters to a plurality of received signal streams to generate a plurality of filtered signal streams. The plurality of received signal streams correspond to signals received at a plurality of receive antennas from a plurality of signal sources (e.g., neighboring cells). In an aspect, the plurality of spatial filters may be predefined spatial filters and may be weighted using a set of predefined filter weights. In an additional or alternative aspect, the plurality of spatial filters may be adaptive spatial filters and may be weighted using a set of dynamically determined filter weights. The method includes detecting physical network identities based on the plurality of filtered signal streams.
Abstract:
Systems and methods establish passive-based proximity regions to determine position of a device and an area. Example embodiments may be utilized in a wireless network where passive-based proximity regions are established for one or more access points in a wireless network. When a wireless device enters or moves through such a passive-based proximity region, one or more resources associated with the wireless network or wireless device may recognize the presence of the passive-based region and utilize this information to determine positioning data for the wireless device.
Abstract:
The present invention is directed to systems and methods which provide an improved compensation filter, as may be used with respect to a decimator, optimally designed using a convex optimization approach. Compensation filters of embodiments of the invention may, for example, be used with respect to a CIC decimator. In accordance with embodiments of the invention, compensation filters are designed with minimum order to approximate target frequency response in the target frequency bands. Additionally or alternatively, compensation filters of embodiments are optimally designed for passband drop and stopband attenuation improvement, such as to satisfy the specified peak ripple in the passband and/or to satisfy the specified peak errors over a set of target sub-bands in the stopband.
Abstract:
A transmission-reflectance swappable Raman device and a method thereof are disclosed. The excitation light is selectively directed to the sample in one direction for generating the transmission Raman signal in transmission mode or in another direction for generating the reflectance Raman signal in reflectance mode. The content of an analyte in a sample can be determined by analyzing transmission and reflectance Raman signal.
Abstract:
An image projector for augmenting the appearance of a physical object is disclosed, also known as an augmented reality projector. The augmented reality projector comprises an optical arrangement to provide the possibility of precise matching of a projected image of the physical object back onto the object itself, instead of using digital image processing to do so. Digital image processing may be used to enhance features of the image and is not required for resizing or orienting the image to the object. This reduces the need for computational power to process the image and spares processing resources to refresh the image in real time. Accordingly, the processed image can be refreshed to change the appearance of a moving object. Furthermore, the precise matching provides the possibility of using projected images a graphical use interface, as movements of a user's fingers on the interface can be determined accurately.