Abstract:
An apparatus (10) for radiant energy transfer has at least one radiant energy transfer panel (20) having a light-energy transfer surface (21) and a back surface (23). The back surface has a panel electrode (42) for an electrical connection with the at least one radiant energy transfer panel. The panel electrode is conductively coupled to a first member of a separable flexible conductive fastener. A second member of the separable flexible conductive fastener has a power connection electrode. The power connection electrode is conductively coupled to a power device (12). Mechanically engaging the first and second members of the separable flexible conductive fastener connects the panel electrode on the at least one radiant energy transfer panel to the power connection electrode.
Abstract:
An OLED device comprises a cathode, an anode, and has therebetween a light-emitting layer wherein the light-emitting layer comprises (a) a 2-arylanthracene compound and (b) a light-emitting second anthracene compound having amino substitution at a minimum of two positions, wherein at least one amine is substituted at the 2 position of the second anthracene compound.
Abstract:
A display device includes a substrate having a display area; two or more column-driver chiplets having connection pads, each column-driver chiplet having a long axis and located over the substrate in the display area, the long axis of each column-driver chiplet oriented in a row direction; one or more row-driver chiplets having connection pads, each row-driver chiplet having a long axis and located over the substrate in the display area, the long axis of each row-driver chiplet oriented in a column direction different from the row direction; and a first common buss extending over the display area in the row direction connected to a connection pad on each of the row-driver chiplets, the first common buss further including one or more electrically connected first buss portions oriented in the column direction, each first buss portion electrically connected to a connection pad of a respective column-driver chiplet.
Abstract:
Compensation for chromaticity shift of an electroluminescent (EL) emitter having a luminance and a chromaticity that both correspond to current density is performed. Different black, first and second current densities are selected based on a received designated luminance and a selected chromaticity, each current density corresponding to emitted light colorimetrically distinct from the light emitted at the other two current densities. Respective percentages of a selected emission time are calculated for each current density to produce the designated luminance and selected chromaticity. The current densities are provided to the EL emitter for the calculated respective percentages of the emission time so that the integrated light output of the EL emitter during the selected emission time is colorimetrically indistinct from the designated luminance and selected chromaticity.
Abstract:
An apparatus for displaying and sensing images includes a display substrate and a plurality of electroluminescent pixels. A plurality of pixel control chiplets and one or more sensor chiplets are affixed to the device side of the display substrate in the display area. A transparent cover is spaced apart from and affixed to the device side of the display substrate, and has a plurality of imaging lenses formed on or in it, each imaging lens spaced apart from and corresponding to an image sensor array in a sensor chiplet for forming an imaging plane on the corresponding image sensor array.
Abstract:
Methods for displaying an image on a color display having a target display white point luminance and chromaticity, and including three gamut-defining emitters defining a display gamut and two or more additional emitters which emit light within the display gamut; the method including receiving a three-component input image signal; transforming the three-component input image signal to a five-or-more component drive signal; and providing the drive signal to display an image corresponding to the input image signal. One method provides a reproduced luminance value higher than the sum of the respective luminance values of the three components of the input signal when reproduced with the gamut-defining emitters. Another method provides reduced power in an OLED display including a white-emitting layer with three color filters for gamut-defining emitters and two or more additional color filters for three additional within-gamut emitters.
Abstract:
An EL light-emitting element is driven digitally to reduce power consumption using a pixel having three transistors and two capacitors. A reset transistor for diode connection writes the threshold voltage of the drive transistor onto a coupling capacitor. The data voltage plus threshold voltage is then written onto the gate of the drive transistor. This reduces the amplitude of the data voltage required, further reducing power consumption.
Abstract:
A radiant energy transfer panel is resized from an array of individually sealed segments by cutting the array along a cut line, thereby damaging some segments by breaking their seals. Other segments adjacent to the damaged segments are left intact. Each segment has two electrodes for power connection. Electrodes of the damaged segments remain electrically connected to electrodes of undamaged segments after cutting. An edge member may be positioned to overlap damaged segments and redirect light from undamaged segments to compensate for the damaged segments. In alternative embodiments, the edge member may be light-blocking. The radiant energy transfer panel may be an electroluminescent panel or a photovoltaic panel.
Abstract:
A circuit is provided to drive a controlled current from a drive transistor into one electroluminescent element of a pixel array. The circuit is operable to compensate for threshold voltage variation of the drive transistor, thereby providing improved image quality. The circuit is suitable for implementation with p-channel MOSFETs and a conventional geometry having in order: substrate, TFT layer(s), anode, electroluminescent layer(s), cathode. A driving method for this circuit is provided. A display incorporating this circuit is provided. The circuit is operable to provide an inspection function prior to fabrication of the electroluminescent layer(s). An inspection method is provided.
Abstract:
To alleviate an afterimage phenomenon caused by a hysteresis characteristic of a drive transistor. Current driven type light emitting elements 3 are provided for each of pixels 6 that are arranged in a matrix shape, and current of the light emitting elements 3 is controlled using drive TFTs 2 that operate by receiving data voltage on a gate. At least two power supply voltages (PVDDa, PVDDb) for supply to each pixel are provided, one being set to a voltage such that current corresponding to a data voltage flows in the drive TFT 2, the other being set to a voltage beyond a variation range of data voltage and that reverse biases the drive TFT 2, and the two power supply voltages are switched and supplied to each pixel 6.