Abstract:
Methods and apparatuses can be disclosed for communicating over a wireless communication network. One communication device includes a processor configured to allocate, or receive allocation of, at least a portion of a first sub-band of a channel and at least a portion of a second sub-band of the channel for use by the communication device. The communication device further includes a plurality of encoders configured to independently encode first and second data for wireless transmission over the first and second sub-bands, respectively. The communication device further includes a transmitter configured to transmit the independently encoded first and second data over the first and second sub-bands, respectively.
Abstract:
Methods, systems, and devices are described for wireless communication at a wireless device. An access point (AP) may identify a pending communication for a wireless device and transmit a wakeup message comprising a device specific sequence to a companion radio of the device. The device may receive the wakeup message using the companion radio, decode the message to obtain a device specific sequence, and activate a primary radio. The wakeup message may include a preamble, a signal field, and a data field. In some cases, the wireless device may demodulate the wakeup message using ON-OFF keying (OOK) modulation. The AP and the device may then exchange data using the primary radio.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for detecting ongoing transmissions and assessing channel state, based on midpacket detection. One example method generally includes receiving signals on a primary channel; detecting, based on the received signals, occurrence or non-occurrence of a first ongoing packet transmission on a primary channel; and generating at least one of a busy signal or an idle signal based on the detection. In this manner, collisions may be avoided.
Abstract:
Systems and methods for aggregation of multiple physical protocol data units are disclosed. In one aspect, a method of transmitting a physical layer packet to a plurality of wireless devices is disclosed. The method includes generating a physical layer packet, the packet including a plurality of payloads, wherein at least one of the payloads comprises first data addressed to a first device and second data addressed to a second device, and wherein each payload is preceded by at least a signal field in the physical layer packet, and transmitting the physical layer packet.
Abstract:
Methods and apparatuses for communicating over a wireless communication network are disclosed herein. One method includes selecting one of a plurality of allocation schemas for allocation of wireless resources to wireless communication devices. The method further includes generating an allocation message comprising an identifier of the selected allocation schema and one or more allocations of wireless resources according to selected allocation schema. The method further includes transmitting the allocation message to one or more wireless communication devices.
Abstract:
A method of wirelessly communicating a packet can include generating, at a wireless device, a packet including a training field based on a training field tone plan. The method further includes populating training tones in the training field tone plan by duplicating tone positions from a base training field one or more times, and adding one or more additional sub-band direct current (DC) tones or edge tones. The method further includes transmitting the packet.
Abstract:
Methods and apparatuses for communicating over a wireless communication network are disclosed herein. One example apparatus includes a memory that stores instructions. The apparatus further includes a processor coupled with the memory. The processor and the memory are configured to determine a total bandwidth for a transmission of a message, the total bandwidth including a plurality of tones. The processor is further configured to divide the plurality of tones in the total bandwidth into one or more 26-, 52-, 106-, 242-, or 996-tone blocks. The processor is further configured to determine an indication. The indication assigns one or more of the one or more tone blocks to a first wireless communication device. The apparatus further includes a transmitter configured to transmit the indication to at least the first wireless communication device or a second device.
Abstract:
A method of wirelessly communicating a packet can include generating, at a wireless device, a packet including a plurality of symbols. The method further includes segmenting an input bit vector into a plurality of symbol vectors according to one of a sequential or distributed segmentation procedure. The method further includes splitting each of the plurality of symbol vectors into two or more split vectors according to one of a sequential or round-robin split procedure. The method further includes mapping each of the split vectors into the plurality of symbols according to one of a block-level repetition or a symbol-level repetition. The method further includes transmitting the packet.
Abstract:
Systems and methods for determining primary channel availability are disclosed. One aspect is a method in a wireless communications system including a first primary channel having first and second frequency spectrum bandwidths. The second frequency spectrum bandwidth includes the first frequency spectrum bandwidth. The method includes determining whether a first preamble has been detected on the second primary channel during a first threshold period of time, determining whether a second preamble has been detected on the first primary channel during a second threshold period of time, determining whether a guard interval has been detected on the second primary channel during a third threshold period of time, determining whether the second primary channel is idle based at least in part on detection of the first preamble, the second preamble and the guard interval, and transmitting a wireless message based at least in part on whether the second primary channel is idle.
Abstract:
Systems and methods for communicating in a wireless communication system are described. Various processes for detecting and correcting communication errors described. In aspect a method in a wireless communication system is provided. The method includes transmitting a first packet from a sending device to a receiving device. The method further includes listening for an acknowledgement during a first time period. The method further includes transmitting a second packet to the receiving device after a second time period, when an acknowledgement is not received during the first time period. The second packet includes one or more error-correction codes operable to recover the first packet.