Abstract:
The present invention relates to a method for encoding/decoding a still image or a video based on a polygon unit and an apparatus for supporting the same. Particularly, a method for encoding an image based on a polygon unit may include partitioning an input image by a unit of block, determining a position of at least one point within the block, determining a position of at least one point in each side of the block, partitioning the block into at least one polygon unit using a vertex of the block, at least two points among the points determined in the side of the block, and a point determined within the block and coding the input image by a unit of the polygon unit.
Abstract:
The present invention relates to a video decoding apparatus and a method for decoding a multi-view video, and the video decoding apparatus according to the present invention comprises: an entropy-decoding unit for entropy-decoding a bitstream and outputting video information required for decoding a current block in a depth picture; a memory for saving pictures referenced when decoding the current block; and a prediction unit for inducing a prediction sample of the current block, by using motion information of a texture picture within the same view as motion information of the current block.
Abstract:
The present invention variably adjusts the maximum splitting information of a conversion unit according to the type of prediction unit and the splitting information on a coding unit and selects the optimal splitting information on the conversion unit. The present invention determines the maximum splitting information on the conversion unit of a depth block by using the maximum splitting information on the conversion unit for texture data. The present invention may lower complexity without a loss in efficiency by variably adjusting the maximum splitting information on the conversion unit in consideration of the characteristics of the depth data. The present invention may lower complexity by determining the maximum splitting information on the conversion unit of the depth data by using similar characteristics between the texture data and the depth data.
Abstract:
The method for processing a multiview video signal according to the present invention acquires motion information generated by predictively coding a picture of a reference point, acquires motion information on a part of a block of the picture from among the motion information generated by predictively coding the picture of a non-reference point, and compresses the motion information acquired for every picture of the reference point and non-reference point and stores the compressed motion information.
Abstract:
A method for processing a video signal according to the present invention comprises the steps of: determining a motion vector list comprising at least one of a spatial motion vector, a temporal motion vector, and a mutation vector as a motion vector candidate of a target block; extracting motion vector identification information for specifying the motion vector candidate to be used as a predicted motion vector of the target block; setting the motion vector candidate corresponding to the motion vector identification information as the predicted motion vector of the target block; and performing motion compensation based on the predicted motion vector. The present invention forms the motion vector candidate and derives the motion vector of the target and derives the motion vector of the target block therefrom, thus enabling a more accurate prediction of the motion vector, and thereby reduces the amount of transmitted residual data and improves coding efficiency.
Abstract:
According to the present invention, an inter-view motion vector of a current coding unit is acquired using parallel processing information, and a motion vector of a current prediction unit in the current coding unit is acquired in parallel using the inter-view motion vector of the current coding unit. The present invention relates to a method and device for processing a video signal, wherein a motion vector prediction value of the current prediction unit is acquired by comparing output order information of a reference picture corresponding to the current prediction unit and output order information of a reference picture corresponding to a corresponding block. According to the present invention, through a parallel processing step, a multi-view point video image can be quickly restored, and the accuracy of the motion vector prediction value can be increased using motion information corresponding to the reference picture of the corresponding block of a different view point from the current prediction unit.
Abstract:
The video signal decoding method according to the present invention involves acquiring weighting-value predicting data of a neighboring view texture block corresponding to the current view texture block, deriving weighting-value predicting data of the current view texture block by using the weighting-value predicting data of the neighboring view texture block, and subjecting the current view texture block to weighting-value compensation by using the derived weighting-value predicting data.
Abstract:
According to the present invention, a method of processing a video signal includes the steps of: receiving the depth data corresponding to a given block containing present pixels; determining a variation of the depth data; comparing the variation of the depth data with a predetermined value; if the variation is less than the predetermined value, coding the present pixels by using a first partial filter, and if the variation is greater than the predetermined value, coding the present pixels by using a second partial filter; wherein the second partial filter is applied to a wider range than the first partial filter. Accordingly the image quality of improved; the complexity according to the filter application is reduced; and at the same time variable filtering may improve the coding efficiency.
Abstract:
The present invention encodes a warp map by using a video codec such as a multi-view texture image by a warp converter, and decodes a warp map by using a video codec such as a multi-view texture image by using a warp inverter. The present invention may incur less additional costs because it does not use a dedicated warp map coder. In addition, the present invention may convert a warp map by using a warp map converter and send the converted map to an encoder and invert decoded warp map information by using a warp map inverter so that the warp map is encoded and decoded by using a video codec such as a multi-view texture image. In addition, it is possible to increase compatibility by enabling various kinds of supplementary data to be used. In addition, it is possible to increase technique compatibility by simply applying a warp map scheme to a 3D video coding technique using a depth map.