Abstract:
A capacitor assembly includes a capacitor having ends. A terminal covers less than an area of one end. A wire bond has opposing ends with one end being coupled to the terminal and is configured to break connection with a circuit when an electrical current through the wire bond reaches a fusing current. An energy storage module includes at least two capacitor assemblies. The wire bond of one capacitor is electrically connected to the second terminal of an adjacent capacitor. An energy storage assembly includes two energy storage modules stacked one on top of the other. A pulse forming network includes conductors and at least two energy storage modules. A method of making a module includes charging each of the capacitors, removing each capacitor that fails, connecting one end of a wire bond to one terminal and connecting the other end to an adjacent capacitor or to a conductor.
Abstract:
A method for using a graphene field-effect transistor (GFET) as a reconfigurable circuit, the method comprising the following steps: depositing a liquid dielectric over a graphene channel of the GFET; applying an activation energy via a first electric field across the liquid dielectric and the graphene channel to electrochemically produce chemical species within the liquid dielectric such that the chemical species accumulate at, and molecularly bond with, the graphene channel thereby decreasing a conductivity of the graphene channel; and applying a deactivation energy via a second electric field of opposite polarity to the first electric field to remove interaction between the chemical species and the graphene channel to increase the conductivity of the graphene channel.
Abstract:
The present invention refers to a structure comprising a biaxially oriented polypropylene (BOPP) film having at least one layer comprising a homopolymer of propylene which layer is in contact with an oil phase, the homopolymer of propylene has a) a content of isotactic pentads in the range from 95% to 98%, and b) a content of ash of not more than 30 ppm, based on the total weight of the homopolymer of propylene, characterized in that the oil phase has an absorbance value of ≤0.1, relative to the pure oil, as determined spectrophotometrically at a wavelength of 860 nm by the reduction of transmitted light intensity. The present invention further refers to the use of a biaxially oriented polypropylene (BOPP) film for making capacitors comprising said structure, wherein the oil phase has an absorbance value of ≤0.1, relative to the pure oil, as determined spectrophotometrically at a wavelength of 860 nm by the reduction of transmitted light intensity as well as the use of the homopolymer of propylene for increasing the life time of a capacitor.
Abstract:
One aspect is contemplated for providing a device having a liquid crystal material exhibiting a dielectric constant of 1000 or more at a temperature at which a specific liquid crystal phase is developed, and a unit configured to apply voltage to the liquid crystal material at the temperature at which the specific liquid crystal phase is developed.
Abstract:
A power capacitor unit for high-pressure applications is provided. The power capacitor unit includes a housing, a plurality of capacitor elements connected to each other and arranged inside the housing, a dielectric liquid (L), a solid electrical insulation system arranged to electrically insulate each capacitor element, a busbar, a plurality of fuse wires, each fuse wire having a first end connected to a respective capacitor element and a second end connected to the busbar (B), wherein the capacitor elements, the solid electrical insulation system, and the fuse wires are immersed in the dielectric liquid (L). Each fuse wire has a plurality of first sections that are in physical contact with the electrical insulation system, and wherein each fuse wire has a plurality of second sections without physical contact with the solid electrical insulation system.
Abstract:
An energy storage device comprises a capacitor having a dielectric between opposite electrodes and a nonconductive coating between at least one electrode and the dielectric. The nonconductive coating allows for much higher voltages to be employed than in traditional EDLCs, which significantly increases energy stored in the capacitor. Viscosity of the dielectric material may be increased or decreased in a controlled manner, such as in response to an applied external stimulus, to control discharge and storage for extended periods of time.
Abstract:
Electrical equipment including insulating fluid and having isoparaffins derived from a renewable carbon source, the fluid having a flash point of at least 210° C. and comprising at least 70 wt % of the isoparaffins. The electrical equipment can be installed and operated subsea.
Abstract:
A method for forming a capacitor, a capacitor formed thereby and an improved composition for a conductive coating are described. The method includes providing an anode, forming a dielectric on the anode and forming a cathode layer over the dielectric by applying a monoamine, a weak acid and a conductive polymer.
Abstract:
At least one wound film/foil or metalized film capacitor is sealed between its electrodes to form a sealed enclosed annular region between the interior of the enclosure, the electrodes and the exterior of the wound capacitor to form a sealed capacitor assembly. A fluid dielectric can be introduced into the sealed enclosed annular region under a vacuum to form a sealed and impregnated wound capacitor assembly.
Abstract:
A polarizable material that includes a nonisotropic solution useful for making electrical devices. In one embodiment, the polarizable material is comprised of commerically available solid bar soap, neat soap or a polymorphic solid solution and employed as the dielectric in a capacitor or an electrolyte in a supercapacitor. In another embodiment the nonisotropic solution is employed as an electrolyte in an electrochemical battery.