Abstract:
An overvoltage protection element which comprises a fabric comprising insulating threads or strands of predetermined thickness having interstices extending therethrough and non-linear material filling said interstices.
Abstract:
An overvoltage protection element which comprises a sheet of insulating material of predetermined thickness having openings extending therethrough and non-linear material filling said holes.
Abstract:
A porous carbon has an ID/IG of 2.0 or more in a Raman spectrum measured by Raman spectroscopy with respect to the porous carbon wherein the IG is an accumulated intensity of a peak for G band around 1590 cm−1, and the ID is an accumulated intensity of a peak for D band around 1350 cm−1. The porous carbon has pores having a size of less than 1 μm. The porous carbon can be contained in a resin composition for producing a varistor element.
Abstract:
The present invention relates to an electrostatic discharge protection device containing a first insulating substrate and a second insulating substrate; a first opposing electrode and a second opposing electrode which two are disposed between the first insulating substrate and the second insulating substrate; external electrodes connected to the first opposing electrode and the second opposing electrode; and a discharge inducing section disposed apart from the front end of the first opposing electrode and the front end of the second opposing electrode.
Abstract:
One or more embodiments provide for a device that utilizes voltage switchable dielectric material having semi-conductive or conductive materials that have a relatively high aspect ratio for purpose of enhancing mechanical and electrical characteristics of the VSD material on the device.
Abstract:
A varistor has a disc of ceramic material having opposed faces with face edges. There is an electrode on each face with a gap between each electrode and the edge of the face. Glass passivation is on at least one face in the gap, the passivation not extending from one electrode to the other electrode around the surface of the disc. Because the passivation is only on the planar opposed disc faces, it may be applied in a simple operation such as screen printing. Indeed, the screen printing may be performed while the discs are in the same nest plates as are used for printing of electrode paste. Even though the passivation does not extend from one electrode to the other, it nevertheless breaks a potentially conductive path between the electrodes caused by interaction between the ceramic and encapsulant materials.
Abstract:
Disclosed is a variable voltage protection device for electronic devices which in one aspect comprises a thin layer of neat dielectric polymer or glass positioned between a ground plane and an electrical conductor for overvoltage protection, wherein the neat polymer or glass layer does not include the presence of conductive or semiconductive particles. Also disclosed is the combination of the neat dielectric polymer or glass thin layer positioned on a conventional variable voltage protection material comprising a binder containing conductive or semiconductive particles. A multi-layer variable voltage protection component is disclosed comprising three layers of overvoltage protection material wherein the outer two layers contain a lower percentage of conductive or semiconductive particles and wherein the inner layer contains a higher percentage of conductive or semiconductive particles. The multi-layer component can optionally be used in combination with the neat dielectric polymer or glass layer and can optionally have interposed metal layers. A method is disclosed for dispersing insulative particles and conductive or semiconductive particles in a binder using a volatile solvent for dispersement of the insulative particles and the conductive or semiconductive particles before mixing with the binder.