Abstract:
Disclosed herein is a method for inhibiting the premature polymerization of ethylenically unsaturated monomers comprising adding to said monomers an effective amount of at least one inhibitor selected from the group consisting of C-nitrosoaniline and quinone imine oxime compounds. Also disclosed is a composition of matter comprising: A) an ethylenically unsaturated monomer and B) an effective inhibiting amount, sufficient to prevent premature polymerization during distillation or purification of said ethylenically unsaturated monomer, of at least one inhibitor selected from the group consisting of C-nitrosoaniline and quinone imine oxime compounds used together with an effective amount of oxygen or air to enhance the inhibiting activity of said inhibitor.
Abstract:
A traction drive fluid is provided containing a naphthenic compound represented by the formula: wherein R1 is an alkyl group having 1 to 8 carbon atoms, R2 through R4 are each independently hydrogen or an alkyl group having 1 to 8 carbon atoms, and A is a naphthenic hydrocarbon group, a saturated polycyclic hydrocarbon group, a naphthenic ester group, or a naphthenic carbonate group.
Abstract:
Disclosed are a method of solidifying a low-boiling-point hydrocarbon, wherein the low-boiling-point hydrocarbon (including hydrocarbons which are gaseous at ordinary temperature) is brought into contact with a metal salt of an aliphatic carboxylic acid, and if necessary a high-boiling-point hydrocarbon, suspended in water, to form a solid aggregate substance, a method of handling the low-boiling-point hydrocarbon, wherein the solid aggregate substance is stored or transported, and a method of regenerating the low-boiling-point hydrocarbon, wherein the solid aggregate substance is decomposed by opening or heating, to obtain the low-boiling-point hydrocarbon. According to the methods, a wide variety of gaseous and highly volatile liquid hydrocarbons can be safely and easily solidified without using harmful reagent, and during storage, transportation, etc., the gaseous hydrocarbons and highly volatile liquids can be handled as a solid material. Further, by releasing under atmospheric pressure at room temperature or by heating if necessary, the original hydrocarbons can be easily obtained, and the metal salt of a carboxylic acid can also be repeatedly used.
Abstract:
It has been discovered that the polymerization of vinyl aromatic compounds, such as styrene, may be inhibited by the addition of a composition that contains a hindered hydroxylamine, and, optionally, a synergist together with the hindered hydroxylamine. In one embodiment of the invention, the hindered N,N-disubstituted hydroxylamine has the formula: [(R1R2R3)C]2N—OH where R1, R2, and R3 are independently selected from the group consisting of hydrogen, straight, branched or cyclic alkyl, aryl, aralkyl, and alkaryl moieties; where no more than two of R1, R2, and R3 on each C can be hydrogen at a time; where one or more of R1, R2, and R3 on one C may be joined to a R1, R2, and R3 on the other C to form a cyclic moiety selected from the group consisting of alkylene, and aralkylene moieties; where any two of the R1, R2, and R3 on any one C may be joined together to form a cycloalkyl; where any of the above definitions of R1, R2, and R3 may contain one or more heteroatoms selected from the group consisting of N, O and S; and where the total number of carbon atoms in the hindered N,N-disubstituted hydroxylamine ranges from 6 to 70. Optional synergists may include alkyl-substituted hydroxyarenes such as 2,5-di-tert-butylhydroquinone, and hydrogen transfer agents such as 1,2,3,4-tetrahydronaphthalene; and the like, and mixtures thereof.
Abstract:
It has been discovered that the polymerization of diene compounds, such as isoprene, may be inhibited by the addition of a composition that contains a at least one phenylenediamine, at least one sterically hindered phenol, and at least one hydroxylamine. This three-component composition exhibits synergistically improved results over the use of the components individually or in paired combinations. In one preferred embodiment, the polymerization inhibiting composition includes phenylenediamine (PDA), butylated hydroxytoluene (BHT), and N,N′-diethylhydroxylamine (DEHA).
Abstract:
For storage of natural gas at pressures over 1,000 psia, it is advantageous to add to natural gas an additive which is a C2 or C3 hydrocarbon compound, or a mixture of such hydrocarbon compounds. Above a lower limit (which varies with the additive being added and the pressure), there is a decrease in the amount of power needed to compress the mixture. For storage or pipeline transportation of natural gas at pressures over 800 psia, it is advantageous to add ammonia to the natural gas, in an amount such that the ammonia does not create a liquid phase at the temperature and pressure used. The ammonia-natural gas mixture can be compressed or pumped with a lower energy expenditure than would be needed for an equivalent volume of natural gas alone. When more than 4% by volume of ammonia is present, the pumping through pipelines is also aided by the refrigerant effect of the ammonia, which reduces the temperature of the gas being transported. Instead of ammonia, hydrogen fluoride or carbon monoxide can be added to the natural gas, but these are less preferred than ammonia.
Abstract:
Substance mixtures comprising (A) vinyl-containing compounds, (B) an active amount of a mixture inhibiting the premature polymerization of the vinyl-containing compounds, comprising (i) at least one N-oxyl compound of a secondary amine which carries no hydrogen atoms on the &agr;-C atoms, and (ii) at least one iron compound, (C) if appropriate nitro compounds, and (D) if appropriate costabilizers, a process for inhibiting the premature polymerization of vinyl-containing compounds (A) and the use of mixture (B), if appropriate as a mixture with nitro compounds (C) and/or costabilizers (D), for inhibiting the premature polymerization of free radical polymerizable compounds and for stabilizing organic materials against the damaging action of free radicals.
Abstract:
A method for inhibiting the formation of gas hydrates in a petroleum fluid having hydrate-forming constituents is claimed. More specifically, the method can be used to treat a petroleum fluid, such as natural gas conveyed in a pipe, to inhibit the formation of a hydrate flow restriction in the pipe. The hydrate inhibitors used for practicing the method comprise substantially water soluble homopolymers and copolymers of surfactant monomers, wherein the surfactant monomer unit may be represented by the formula: where R1 and R2 independently are hydrogen or a methyl group, M is a metal cation, n is a number sufficient to produce a number average molecular weight between 1000 and 6,000,000, and o is a number from 1 to 5.