Abstract:
A mounting plate and a security device using the same are provided. The mounting plate is for being fixed to a surface, wherein a mounting device is hanged up on the mounting plate, and the mounting plate comprises a first conductive sheet and a second conductive sheet electrically connected to a first electrode of an exterior power and a second electrode of the exterior power respectively. When the mounting device is hanged up on the mounting plate, the exterior power is electrically connected to the mounting device through the first conductive sheet and the second conductive sheet.
Abstract:
A printed circuit board assembly and method of assembly is provided for a printed circuit board having a top and bottom surface with at least one edge portion having a rounded surface extending from the top surface to a point below the top surface and at least one electrical contact pad located on the top surface and extending over the edge portion rounded surface to a point below the top surface.
Abstract:
A printed circuit board terminal includes a rectangular metal wire rod having a substantially rectangle cross-section. One longitudinal end portion of the printed circuit board terminal includes an insertion portion that is configured to be inserted into a through hole provided in a printed circuit board and soldered. A conducting metal plated layer is provided on an entire surface of the rectangular metal wire rod. One marginal portion of the insertion portion, which faces a long side direction of the rectangle cross-section, is removed to reduce a dimension in the long side direction corresponding to a width direction.
Abstract:
A semiconductor device includes a terminal case containing a semiconductor element, a plurality of pin terminals of equal length mounted in the terminal case and electrically connected to the semiconductor element, the plurality of pin terminals projecting outward from a predetermined surface of the terminal case in the same direction, and at least one protruding pin terminal mounted in the terminal case and projecting outward from the predetermined surface of the terminal case in the same direction farther than the plurality of pin terminals.
Abstract:
A pin having a contact part may be inserted into a receiving opening in a printed circuit board and anchored in the receiving opening with a press fit. Also, a method provides for inserting a pin into a receiving opening in a printed circuit board, in which the pin is inserted into the receiving opening from one side of the printed circuit board, and a contact part of the pin is anchored in the receiving opening with a press fit. The contact part is inserted into the receiving opening in a contactless manner or with a sliding fit and is subsequently deformed within the receiving opening by expansion transversally to the insertion direction in order to anchor the contact part in the receiving opening with a press fit.
Abstract:
An example electronic device (2) having a grounded structure includes a conductive bearing board (220) having at least one fixing pole (221); a circuit board (210) having at least one through hole (211) corresponding to the fixing pole, and a grounded layer (215) respectively formed at a peripheral region of the at least one through hole. The at least one fixing pole respectively fixed at the at least one through hole and contacts with the grounded layer. The electronic device has a simple structure, and it can be connected with a ground perfectly.
Abstract:
An interposition structure interposed between substrates and capable of guiding the insertion of a connection pin for electrically connecting the substrates to each other, whereby the connection pin can be inserted properly even in cases where the substrates to be connected or other members have a dimensional error caused during production thereof, a positioning error or the like. The interposition structure has an interposition body in which a through hole is formed such that connection pin inlet and outlet portions thereof each have an inner diameter gradually increasing in a direction from the inner part to the corresponding outer open end thereof, and also has a positioning protuberance provided on the underside of the interposition body. The interposition structure is interposed between upper and lower substrates with the positioning protuberance received in a recess formed in the upper surface of the lower substrate, and the connection pin is inserted through a hole in the upper substrate, the through hole, and a hole in the lower substrate.
Abstract:
Provided is a system to reduce the force required for inserting a circuit board assembly including a plurality of circuit boards into the card edge connectors. A circuit board assembly includes a first circuit board, a second circuit board and a coupling part. The first circuit board includes printed circuit elements and a connecting part. In the same manner as the first circuit board, the second circuit board includes printed circuit elements and a connecting part. The front edge of the connecting parts are shifted from the front edge of the other connecting part by a distance “d” along the connecting or inserting direction of the circuit boards toward the card edge connectors, so that the distance between the front edge of the connecting part of the first circuit board and the first card edge connector differs from the distance between the front edge of the connecting part of the second circuit board and the second card edge connector.
Abstract:
An apparatus for automatically mounting an electronic device having a plurality of leads on a printed circuit board, by inserting the leads into mount holes of the printed circuit board. A plurality of extension pins are connected straight to the leads to hold the leads of the electronic device. The extension pins are inserted into the mount holes, while the connection between the extension pins and the leads is maintained. The extension pins are then removed from an opposite side of the printed circuit board, thus guiding and inserting the tips of the leads into the mount holes.