Abstract:
A method, a computer program product, and a computer system for determination of encoding based on received code point classes are provided. The computer implemented method includes transferring data in a text form. The computer implemented method includes, in response to determining that decoding the data in text form passes, transferring some or all of the data in a binary form. The computer implemented method includes calculating code point class proportions for the data in the text form and the data in the binary form and determining a best form for transferring the data, based on comparison of the code point class proportions.
Abstract:
A sorting decoder captures the rank-order of a set of input analogue signals in the digital domain using simple logic components such as self-timed first state elements, without requiring conventional analogue-to-digital signal converters. The analogue signals are each compared against a monotonic dynamic reference and the resulting comparisons are snapshot by a self-timed first state element for each input signal, or the last member of a sorted collection of input signals, at the time when it reaches the reference signal, so that a different snapshot representing the signal value ranking relative to the other signal values is produced for each input signal. The resulting rank-order estimation snapshots are binary signals that can then be further processed by a simple sorting logic circuit based on elementary logic components.
Abstract:
In a method for determining an interpolated complex valued sample, a radial component of the interpolated sample is determined using information on a radial component and information on of a phase component of a first complex valued sample and of a second complex valued sample.
Abstract:
Each binary floating-point value in a set of binary floating-point values is converted to a decimal floating-point value. Data are determined including an exponent, a mantissa and a quantity of decimal digits of the mantissa for each decimal floating-point value. The exponents, the mantissas and the quantity of decimal digits are individually compressed to produce compressed floating-point values based on the individual compressions.
Abstract:
Disclosed is a method to convert a Unicode character. The method includes intercepting a service call for a character conversion, determining if a character associated with the service call is a candidate for a first conversion service, if the character is a candidate for the first conversion service, converting the character using the first conversion service, if the character is not a candidate for the first conversion service, converting the character using a second conversion service, and returning the converted character.
Abstract:
A particular implementation receives geometry data of a 3D mesh, and represents the geometry data with an octree. The particular implementation partitions the octree into three parts, wherein the symbols corresponding to the middle part of the octree are hierarchical entropy encoded. To partition the octree into three parts, different thresholds are used. Depending on whether a symbol associated with a node is an S1 symbol, the child node of the node is included in the middle part or the upper part of the octree. In hierarchical entropy encoding, a non-S1 symbol is first encoded as a pre-determined symbol ‘X’ using symbol set S2={S1, ‘X’} and the non-S1 symbol itself is then encoded using symbol set S0 (S2⊂S0), and an S1 symbol is encoded using symbol set S2. Another implementation defines corresponding hierarchical entropy decoding. A further implementation reconstructs the octree and restores the geometry data of a 3D mesh from the octree representation.
Abstract:
A digitizer system (DS) may include one or more input channels to receive sample data, and an acquisition state machine (ASM) to organize the sample data into one or more acquisition records according to events of interest, and generate framing information corresponding to the one or more acquisition records. The events of interest may be identified by a trigger circuit in the DS, and relayed to the ASM for organizing the sample data. The DS may further include a data interface capable of receiving the one or more acquisition records and the framing information, encoding the one or more acquisition records and the framing information into encoded data, and transmitting the encoded data to an expansion module. The expansion module may receive the encoded data, decode the encoded data, and recover the sample data from the decoded data according to the framing information and the one or more acquisition records.
Abstract:
A data processing apparatus that is capable of reducing the garbling of characters caused by the difference among the character codes when setting data are transferred to another apparatus by the import-export function. A storage unit stores setting data for the data processing apparatus. A receiving unit receives an instruction for exporting the setting data stored in the storage unit. A converting unit converts Unicode data included in the setting data into character code data of language, which is set to the data processing apparatus. An export unit exports the character code data converted by the converting unit and the Unicode data.
Abstract:
A method of decoding an encoded signal includes steps of receiving the encoded signal, creating a decoding signal by delaying the encoded signal by a predetermined amount of time Δ, sampling the encoded signal using the decoding signal, and determining a value of each of a plurality of decoded bits represented by the encoded signal based on the sampling. Also, a method of operating a shift register wherein the shift register has an initialization state wherein a first binary symbol is stored in a first position and a second binary symbol different than the first binary symbol is stored in each of one or more intermediate positions and a last position. The method includes determining that the shift register is full responsive to detecting that the first binary symbol has been stored in either one of the intermediate positions or the last position.
Abstract:
A computer-implemented method for compressing data is disclosed. The method starts with determining a way to read a received data block in its native endian format of at a storage system, where the data block contains a set of data and the determination is based on sampling a subset from a set of data and checking variation of the values. The method selects a base value for the data block based on the determined way to read the data block and generates a set of updated data, where each value of the set of updated data corresponds to the base value and an original value. The method separates each data within the set of updated data into two portions with different bit-value distribution patterns and compresses one portion with a first algorithm while compresses another portion with a second algorithm different from the first.