Abstract:
A method of evaluating an image blur of an optical film includes displaying a test pattern by driving an organic light-emitting display apparatus including the optical film, obtaining an image by capturing the test pattern using a digital camera, obtaining a spatial luminance distribution from the image, transforming the spatial luminance distribution into a sensation curve, and estimating a blur width from the sensation curve, where the blur width is a distance between peaks having negative minimum values, from among a plurality of peaks of the sensation curve.
Abstract:
A display element for viewing a display such as, for example, a display on an electronic device. The display element comprises a transparent substrate and a scattering anti-glare layer located between a front surface and back surface of the display element, wherein the scattering anti-glare layer comprises a plurality of scattering elements. The scattering anti-glare layer has low reflectivity and provides an anti-glare effect for light reflected by interfaces within the display element.
Abstract:
A display device includes: a display panel to display an image; a window covering the display panel, and including a display area through which the image is to be transmitted, and a non-display area surrounding the display area, the window including: a window base opposite the display panel; a printing layer below the window base; and a light-path changing layer between the window base and the printing layer, the light-path changing layer including: an optical structure; and a resin coating the optical structure; and an adhesive layer between the display panel and the window.
Abstract:
The present disclosure relates to substrates having laser-induced scattering features located either on the surface of the substrate or within the substrate, along with methods of making such scattering substrates. The disclosed scattering substrates provide improved light extraction properties and may be useful in a variety of applications, such as lighting and electronic displays.
Abstract:
Provided is a reflective article including a first reflecting material and a second retro reflecting material; where sunlight that is photosynthetically active is at least partially reflected by the article and sunlight that is not photosynthetically active is at least partially retro reflected by the article. Also provided is a method for growing a plant, where the method includes placing the reflective article under, around, or in the proximity of the plant.
Abstract:
A light-control member (13) includes a substrate (39); light-shielding layers (40) provided in a first area (A1) on one surface (39a) of the substrate (39); a light-diffusion section (41) provided in an area other than the light-shielding layers (40) in the first area (A1) and formed of light transmitting material; and a support section(45) provided in a second area (A2) positioned on an outer side of the first area (A1) on the one surface (39a), in which the light-diffusion section (41) has a light emitting end surface (41a) in contact with the one surface (39a) of the substrate (39), a light incident end surface (41b) opposing the light emitting end surface (41a) and having an area greater than an area of the light emitting end surface (41a), and a reflective surface (41c) which is in contact with the light emitting end surface (41a) and the light incident end surface (41b) and on which light incident from the light incident end surface (41b) is reflected, and a formation area of the support section (45) per unit area in the second area (A2) is greater than a formation area of the support section (45) per unit area in the first area (A1).
Abstract:
A light diffusing member includes a base having light transmissivity, a light diffuser formed with a predetermined height on a surface of the base facing a display body, and a light blocking layer formed in a region other than the light diffuser on the surface of the base facing the display body. The light blocking layer has a thickness smaller than the height of the light diffuser. The light diffuser has a light exit end surface that is in contact with the base, and a light entrance end surface that is opposite the light exit end surface and that has an area larger than the area of the light exit end surface. The light entrance end surface is adhered to the adhesive layer, and the thickness of the adhesive layer is smaller than the height of a space formed between the light diffuser and the light blocking layer, the height extending from the light blocking layer to the light entrance end surface.
Abstract:
A light diffusion member includes a matrix and a number of quantum dots uniformly dispersed in the matrix. The matrix is made of epoxy resin and ammonium persulfate. The quantum dots have a mass percentage of about 10% to about 20% of the total mass of the light diffusion member. A light emitting device using the light diffusion member and a display device using the light emitting device are also provided.
Abstract:
Retroreflecting optical constructions are disclosed. A disclosed retroreflecting optical construction includes a retroreflecting layer that has a retroreflecting structured major surface, and an optical film that is disposed on the retroreflecting structured major surface of the retroreflecting layer. The optical film has an optical haze that is not less than about 30%. Substantial portions of each two neighboring major surfaces in the retroreflecting optical construction are in physical contact with each other.
Abstract:
An optical-diffusion film for display which, particularly when applied to a display device using a collimated backlight as a backlight for the display panel, can efficiently diffuse and emit a highly directional light emitted from the collimated backlight toward the front of the display device as image display light, without allowing straight transmission of the highly directional light, and a display device using the optical-diffusion film for display are provided.Disclosed is a single layered optical-diffusion film having a columnar structure in which plural pillar-shaped objects having a relatively high refractive index are arranged to stand close together in a film thickness direction in a region having a relatively low refractive index, in which the film thickness of the optical-diffusion film has a value within the range of 60 to 700 μm, and the haze value obtainable in the case in which light is made incident in the normal line direction of the film plane has a value of 80% or more.