Abstract:
A method of detecting the content of impurity in a gaseous medium has the steps of continually detecting impurities in the gaseous medium, emitting analyzing signals that vary with variation in impurity content, and statistically analyzing the emitted signals. When statistically analyzing the emitted signals, newer signals are accorded greater influence on outputs than are older signals, which become gradually less influential.
Abstract:
Methods and apparatus for measuring the intensity of light scattered by particles suspended in a sample volume illuminated by an interrogating light beam directed along an input axis, utilizing plural Fourier optical systems having lenses arranged for illuminating multiple photodetectors. The lenses of each Fourier optical system can be of different optical powers, for providing low power and high power optical trains. A low power optical train provides high resolution measurements of light scattered within a small angular range at low angles relative to the input axis, while a high power optical train provides lower resolution measurements of light scattered within a larger angular range at higher angles.
Abstract:
Reflectance apparatus is disclosed for obtaining measurement of nonspecular reflected light in which controlled light rays are directed along a transmission path from a light source through a plurality of light traps to expose or illuminate a specimen and nonspecular reflected light is passed from the specimen through the light traps along a transmission path to one or more detectors where the nonspecular reflected light is measured, the detector's field of view being larger than the illuminated area of the specimen over a wide range of specimen to source and detector distances.
Abstract:
An improved spectrophotometer, especially suitable for use in centrifugal analysis instrumentation, is disclosed. The spectrophotometer is improved by including therein a detector comprising a photodiode array assembly having a photodiode array, a spectral filter assembly situated substantially parallel thereto and in the path of incident light and means for attenuating stray light which would otherwise impinge on each of the photodiodes of the array.
Abstract:
The forward light scattering photometer for analyzing particles dispersed in a fluid includes a cylindrical housing enclosing a pair of axially spaced, spherical-surfaced, bi-convex lenses which provide axial focusing of the lamp image in an intermediate light scattering chamber through which the sample being analyzed is flowed. Such lenses provide axial focusing with no circumferential aberations and only radial aberations. Light traps having radial borders, such as semicircular blank off discs, are located on the upstream or lamp side of each lens to provide an image having sharp radial edges, thereby eliminating the need for high quality lenses adapted to correct for spherical aberations.The lenses are shielded from contamination by particles from the sample by a stream of purge air introduced into the housing at a location near each lens and tangentially with the housing bore so as to create a stable vortexing flow of the purge air in the vicinity of each lens.
Abstract:
An illumination apparatus for configuration with spectro-fluorometer system includes at least one light emitting diode (LED), a collimator, and a light guide. The at least one LED may be configured to emit light including a first beam-width angle. The collimator is optically coupled to the at least one LED. The collimator is configured to collimate the light emitted from the at least one LED to form a collimated light beam including a second beam-width angle and a first cross-sectional illumination intensity profile. The second beam-width angle may be less than the first beam-width angle. The light guide may be configured to alter a cross-sectional area of the collimated light beam and output a substantially homogenized light beam including a second cross-sectional illumination intensity profile with greater uniformity than the first cross-sectional illumination intensity profile.
Abstract:
Devices and methods for detecting particulate matter are described herein. One device includes a laser, a reflector, an ellipsoidal reflector, and a detector, wherein the laser is configured to emit a beam, the reflector is configured to reflect the beam toward the ellipsoidal reflector, and the ellipsoidal reflector has a first focal region located on a path of the reflected beam, and a second focal region located at a surface of the detector.
Abstract:
Embodiments of the present invention include a device for removing energy from a beam of electromagnetic radiation. Typically, the device can be operatively coupled to a turbidity measuring device to remove energy generated by the turbidity measuring device. The device can include a block of material having one of a plurality of different shapes coated in an energy absorbing material. Generally, the device can include an angled or rounded energy absorbing surface where the beam of electromagnetic radiation can be directed. The angled or rounded energy absorbing surface can configured to deflect a portion of the beam of electromagnetic radiation to a second energy absorbing surface.
Abstract:
A portable ambient air quality monitor having an enclosure to enclose and protect the monitor from an ambient environment and an airflow intake for controllably allowing ambient air to enter the monitor. A photodiode is disposed at a location downstream from a fan. The airflow from the fan is laminarized by a mesh or baffle to allow a thin stream of air to flow over the photodiode. A sensing region is defined by an intersection of an airflow sampling path and an optical path. The sensing region is also disposed above the photodiode. The airflow sampling path is configured to receive laminar airflow from the airflow intake and for directing the laminar airflow into the sensing region. A light beam is generated from a laser to reflect the light beam for reducing the required area of the sensing region to detect and measure the particles floating in the ambient air.
Abstract:
A nephelometric process turbidimeter for measuring a turbidity of a liquid sample includes a transparent sample vial which comprises a sample vial lateral inner surface. A vial head comprises a vial head lateral inner surface. The vial head and the sample vial together define a sample volume of a liquid sample having a shape of a cylinder. A sample inlet opening is arranged at the vial head and comprises an inlet opening axis. A sample outlet opening is arranged at the cylindrical vial head lateral inner surface to be axially closer to the sample vial than to the sample outlet opening. The inlet opening axis is inclined with respect to an inlet cross plane with an inclination angle of 10° to 80°, and is angled with respect to a radius line from a middle of the cylinder to the sample inlet opening with a tangency angle of more than 15°.