摘要:
In an apparatus 10, a space is formed by a pair of impermeable supports 16 and a pair of spacer members 12 for providing a predetermined distance between the impermeable supports 16. A permeable membrane is provided within the space and outlets 15 are provided on each of the pair of impermeable members 16. A stirrer 20 is provided within the space where the permeating object is present, and comprises a stirring axis 22, a driving source for oscillating the stirring axis 22, and a plurality of stirring blades 24 mounted on the stirring axis 22. Cut sections 26 are provided at a portion of each of the stirring blades 24 so that the permeating object can be circulated at the space between the stirring blade 24 and the inner wall of the spacer member 12 or at the space between the stirring blade 24 and the permeable membrane 14. The cut sections are alternately provided at the right and left sides of the layered stirring blades.
摘要:
A system for collecting and processing donated blood comprises a first porous medium interposed between a blood collection bag and a satellite bag and a second porous medium interposed between the blood collection bag and another satellite bag. The porous media are leucocyte depletion media. The system may also include one or more of the following: a red cell barrier medium, a separation medium, a gas inlet, and a gas outlet. The system can be used to centrifuge whole blood into one or more components, and includes a means for protecting the system during centrifugation.
摘要:
A method and apparatus for performing solid phase extraction (SPE) on a fluid that contains solubles and suspended solids. The method includes: (a) providing a volume of fluid that contains solubles and suspended solids, (b) processing the volume of fluid to extract solubles therefrom by the steps comprising: (i) passing a first portion of the volume of fluid through a SPE medium that has first and second sides, the first portion of the volume of fluid passing through the SPE medium from the first side to the second side; and then (ii) passing a second portion of the volume of fluid through the SPE medium from the second side to the first side; and (c) repeating step (b) a plurality of times such that no substantial amount of the suspended solids is removed from the processed volume of fluid and solubles are retained on the SPE medium. The apparatus includes a conduit, a SPE medium located in the conduit, and a fluid flow direction altering mechanism or a SPE rotating mechanism.
摘要:
A process is provided for separating and recovering solid, metal catalysts from reaction mixtures in which they are dispersed, with cross-flow filtration using membrane separation devices. The process is particularly useful for separating gelatinous catalyst sludges, e.g., nickel hydroxide, used in oxidizing diacetone sorbose.
摘要:
A cleaning apparatus for use in connection with fluid-flow tubing systems, particularly for cleaning tubular semipermeable membranes, comprising a cartridge which is adapted to supply scrubbing and cleaning objects such as sponge balls into the tubing system, and which is adapted to receive and contain the objects when the direction of fluid flow in the system is reversed. A by-pass conduit and a check valve are provided to permit fluid to flow around the cartridge when the flow direction is reversed.
摘要:
Systems and methods for rapid flushing of a membrane-based fluid filtration system are disclosed herein. During flushing, a membrane of the system can be decoupled from other portions of the system and brine can be flushed from the membrane separate from the other portions of the system. In some embodiments, the membrane can be connected to a pump to form a flushing loop that is separate from the flushing loops of the main system to flow the flushing fluid therethrough. The flushing fluid through the membrane can be optimized and set based on a flow rate of the membrane to prevent damaging the membrane while minimizing flush time of the membrane relative to the flush time of the system.
摘要:
Apparatus and method for semi-permeable membrane cleaning in particular, applying series of pulsed water stroke, made simultaneously with osmosis backward flow causing superposed membrane directional shaking and fouling detachment. Pulsed water stroke provided by water stroke generator as several momentum sharp changes in gauge pressure and induce velocity pulse of residual brine flow. The pulsed water strokes ideally induce resonance in the membrane. Osmosis backward wash may be provided either by injection for predetermined injection time, additional solution selected in such way that net driving pressure becomes opposite to normal osmotic operation thereby providing a backward flow of permeate towards to the side opposite to normal operation mode, so as to lift said foulant, or by throttling permeate exiting from the permeate enclosure, until the net driving pressure value become equal to zero, during application of precise synchronized and opposing brine and permeate pressure strokes thereby providing a plurality of quick RO-FO-RO process changes. These procedures allow a membrane to be kept continuously clean and operate at higher recovery.
摘要:
The present application comprises symbiotic reverse osmosis train system for maximizing desalinated water recovery, meanwhile yielding high salinity brine suitable for osmotic power generation or commercial salt production; trains comprise series of number of cells operating in interrelated sequential pattern within a salinity field. Each cell forms a closed hydraulic brine loop having pumping means, power recovery means and shared semipermeable membranes between adjacent cells, defining the boundaries of flow path within a given cell, using applicant's technology for semipermeable Flat Sheet Membranes [FSM] or Hollow Fiber Membranes [HFM] intended for new and novel development in Hypersalinity processes and applications in desalination and osmotic power generation of brackish, seawater and brines of 15% salinity or more. Charging each cell in the train of plurality of cells with a formulated brine having a specified ionizable inorganic salt concentration and type, without permitting mixing of the given brines among the adjacent cells in the plurality of cells, allowing the train of multiple cells to achieve water recovery exceeding 85% with concentrated rejected brine of 28-30% salt content that is recoverable by evaporation/crystallization for commercial use. Highlighting, the first of its kind, a large scale Seashore Tower of flat Sheet membrane [FSM] for Induced Osmotic Desalination Plant of a capacity 28-56 million cubic meter per year (15 billion gallons per year) at a recovery rate of 85%, and rejected brine salinity of 28-30%, either used for sodium chloride salt recovery of 1-2 million metric tons per year, or to generate Induced Osmotic Power of 25-50 MW.
摘要:
A method of filtering contaminants from a fluid is disclosed. A feedstream of fluid containing contaminants is directed into a filter chamber containing a filter element. Part of the feedstream fluid flows in one of: a forward flow direction where it passes in a first direction through a wall of the filter element; and a reverse flow direction where it passes in a second, opposite direction through the wall. The filtrate is directed into a flowline for collection. The feedstream fluid is then arranged to flow through the filter element in the other direction, to remove contaminant material from a surface of the element wall. Following removal of contaminant material, the feedstream fluid is continued to be directed through the wall of the filter element in said other direction, to filter out contaminants from the fluid during flow in said other direction.
摘要:
The present invention discloses a method and apparatus for separating particles and dissolved matter from a produced water fluid stream. Specifically, the present invention includes a first pressure source which transports untreated produced water or contaminated aqueous fluid into a separator annulus with a filter element disposed therein. The untreated fluid is placed under appropriate pressure sufficient to produce turbulent flow, increased particle kinetics and/or cavitation allowing the desired fluid to penetrate and pass into and through the, filter media. The treated fluid is then transported to a collection tank. The contaminant matter retained by the filter media may be removed by the nearly instantaneous reverse pressurization of the separator annulus by a second pressure source thereby removing the contaminant particles away from contact with the filter media, and which may then be transported to a waste collection tank or a separator for further treatment.