Abstract:
A method derives a terminal return current or upstream current to adjust and/or compensate for variations in beam current during ion implantation. One or more individual upstream current measurements are obtained from a region of an ion implantation system. A terminal return current, or composite upstream current, is derived from the one or more current measurements. The terminal return current is then employed to adjust scanning or dose of an ion beam in order to facilitate beam current uniformity at a target wafer.
Abstract:
A system, apparatus, and method for changing source gases used for ion implantation is provided. A source chamber has a housing having one or more sidewalls and an extraction plate, wherein the one or more sidewalls and the extraction plate enclose an interior region of the source chamber. One or more inlets provide a fluid communication between one or more ignitable material sources and the interior region. An extraction aperture in the extraction plate provides a fluid communication between the interior region of the source chamber and a beam path region external to the source chamber. One or more diffusion apertures in the one or more sidewalls of the housing further provide a fluid communication between the interior region and a diffusion region external to the ion source chamber, wherein deposited ions are operable to diffuse out of the source chamber through the diffusion apertures.
Abstract:
The present invention is directed to a switch circuit and method to quickly enable or disable the ion beam to a wafer within an ion implantation system. The beam control technique may be applied to wafer doping repaint and duty factor reduction. The circuit and method may be used to quench an arc that may form between high voltage electrodes associated with an ion source to shorten the duration of the arc and mitigate non-uniform ion implantations. The circuit and method facilitates repainting the ion beam over areas where an arc was detected to recover dose loss during such arcing. A high voltage high speed switching circuit is added between each high voltage supply and its respective electrode to quickly extinguish the arc to minimize disruption of the ion beam. The high voltage switch is controlled by a trigger circuit which detects voltage or current changes to each electrode. Protection circuits for the HV switch absorb energy from reactive components and clamp any overvoltages.
Abstract:
A system, method, and apparatus for mitigating contamination during ion implantation are provided. An ion source, end station, and mass analyzer positioned between the ion source and the end station are provided, wherein an ion beam is formed from the ion source and travels through the mass analyzer to the end station. An ion beam dump assembly comprising a particle collector, particle attractor, and shield are associated with the mass analyzer, wherein an electrical potential of the particle attractor is operable to attract and constrain contamination particles within the particle collector, and wherein the shield is operable to shield the electrical potential of the particle attractor from an electrical potential of an ion beam within the mass analyzer.
Abstract:
The present invention is directed to a switch circuit and method to quickly enable or disable the ion beam to a wafer within an ion implantation system. The beam control technique may be applied to wafer doping repaint and duty factor reduction. The circuit and method may be used to quench an arc that may form between high voltage electrodes associated with an ion source to shorten the duration of the arc and mitigate non-uniform ion implantations. The circuit and method facilitates repainting the ion beam over areas where an arc was detected to recover dose loss during such arcing. A high voltage high speed switching circuit is added between each high voltage supply and its respective electrode to quickly extinguish the arc to minimize disruption of the ion beam. The high voltage switch is controlled by a trigger circuit which detects voltage or current changes to each electrode. Protection circuits for the HV switch absorb energy from reactive components and clamp any overvoltages.
Abstract:
One embodiment of the invention relates to an apparatus for profiling an ion beam. The apparatus includes a current measuring device having a measurement region, wherein a cross-sectional area of the ion beam enters the measurement region. The apparatus also includes a controller configured to periodically take beam current measurements of the ion beam and to determine a two dimensional profile of the ion beam by relating the beam current measurements to sub-regions within the current measuring device. Other apparatus and methods are also disclosed.
Abstract:
An exemplary ion source for creating a stream of ions has a chamber body that at least partially bounds an ionization region of the arc chamber. The arc chamber body is used with a hot filament arc chamber housing that either directly or indirectly heats a cathode to sufficient temperature to cause electrons to stream through the ionization region of the arc chamber. A seals has a ceramic body having an outer wall that abuts the arc chamber body along a circumferential outer lip. The seal also has one or more radially inner channels bounded by one or more inner walls spaced inwardly from the outer wall.
Abstract:
The present invention is directed to a beam control circuit and method used to minimize particle contamination in an ion implantation system by reducing the duty factor of the ion beam. In one embodiment the beam control circuit comprises a,high voltage switch connected in series with a power supply and an ion source portion of the ion implantation system, wherein the switch is operable to interrupt or reestablish a connection between the power supply and an electrode of the ion source including electrodes for plasma production. The beam control circuit also comprises a switch controller operable to control the duty factor of the ion beam by controlling the switch to close before a start of ion implantation and to open after a completion of implantation or at other times when the beam is not needed, thereby minimizing beam duty and particle contamination. The beam control technique may be applied to wafer doping implantation and duty factor reduction. Protection circuits for the high voltage switch absorb energy from reactive components and clamp any overvoltages.
Abstract:
A system, apparatus, and method for changing source gases used for ion implantation is provided. A source chamber has a housing having one or more sidewalls and an extraction plate, wherein the one or more sidewalls and the extraction plate enclose an interior region of the source chamber. One or more inlets provide a fluid communication between one or more ionizable material sources and the interior region. An extraction aperture in the extraction plate provides a fluid communication between the interior region of the source chamber and a beam path region external to the source chamber. One or more diffusion apertures in the one or more sidewalls of the housing further provide a fluid communication between the interior region and a diffusion region external to the ion source chamber, wherein deposited ions are operable to diffuse out of the source chamber through the diffusion apertures.
Abstract:
The present invention concerns a method of tuning a plurality of electrostatic quadrupoles used for focusing an ion beam implanter. The steps of the method include: classifying the plurality of electrostatic quadrupoles into one of a predetermined number of groups, and for each of the predetermined number of groups, tuning the quadrupoles in the group by iteratively substituting values for a voltage ton be applied to each of the quadrupoles in the group using a multi-variable heuristic algorithm and concurrently measuring final beam current measured downstream of the ion accelerator to determine a set of applied voltage values that maximize the final beam current among those applied voltage values tested and utilizing the set of applied voltage values to tune the quadrupoles in the group. If the resulting ion beam is suitable, utilizing the determined applied voltages to tune the quadrupoles. If the resulting ion beam is not suitable, changing the predetermined number of groups and repeating the steps of the method.