Abstract:
The present invention provides compounds and pharmaceutical compositions of a peptidomimetic ligand, e.g. LLP2A, conjugated with a bisphosphonate drug, e.g. Alendronate. The compounds and pharmaceutical compositions of the present invention are useful in the treatment of osteoporosis and for the promotion of bone growth due to their specificity for the α4β1 integrin on mesenchymal stem cells and for the surface of bone.
Abstract:
The present invention is drawn to cyclic RGD peptides linked via a disulfide bond, where the terminal cysteines are preferably in the D configuration. These peptides target αvβ3 integrin on tumor cells and neovasculatures and function as targeting agents for tumor diagnostic imaging and therapy. Compared with the commonly used RGD ligands, compounds of the present invention have improved targeting efficacy and lower nonspecific binding to normal organs. Moreover, the compounds of the present invention can be functionalized to conjugate imaging payload without decreasing binding strength.
Abstract:
The present invention provides compounds and pharmaceutical compositions of a peptidomimetic ligand, e.g. LLP2A, conjugated with a bisphosphonate drug, e.g. Alendronate. The compounds and pharmaceutical compositions of the present invention are useful in the treatment of osteoporosis and for the promotion of bone growth due to their specificity for the α4β1 integrin on mesenchymal stem cells and for the surface of bone.
Abstract:
The present invention provides compounds and pharmaceutical compositions of a peptidomimetic ligand, e.g. LLP2A, conjugated with a bisphosphonate drug, e.g. Alendronate. The compounds and pharmaceutical compositions of the present invention are useful in the treatment of osteoporosis and for the promotion of bone growth due to their specificity for the α4β1 integrin on mesenchymal stem cells and for the surface of bone.
Abstract:
The present invention provides kits and methods for detecting peptides that change of the fluorescence of dyes upon binding to the dye. In addition, the invention provides methods for identifying said peptides.
Abstract:
The present invention provides a nanocarrier having an interior and an exterior, the nanocarrier comprising at least one conjugate, wherein each conjugate includes a polyethylene glycol (PEG) polymer. Each conjugate also includes at least two amphiphilic compounds having both a hydrophilic face and a hydrophobic face. In addition, each conjugate includes an oligomer, wherein at least 2 of the amphiphilic compounds are covalently attached to the oligomer which is covalently attached to the PEG. The nanocarrier is such that each conjugate self-assembles in an aqueous solvent to form the nanocarrier such that a hydrophobic pocket is formed in the interior of the nanocarrier by the orientation of the hydrophobic face of each amphiphilic compound towards each other, and wherein the PEG of each conjugate self-assembles on the exterior of the nanocarrier.
Abstract:
The present invention is directed to bladder cancer specific ligand peptides, comprising the amino acid sequence X1DGRX5GF (SEQ ID NO: 1), and methods of their use, e.g., for imaging detection for diagnosis of bladder, tumor localization to guide transurethral resection of bladder cancer, imaging detection of bladder cancer for follow-up after the initial treatment that can replace or complement costly cystoscopy, imaging detection of metastatic bladder cancer, and targeted therapy for superficial and metastatic bladder cancer.
Abstract:
The present invention provides amphiphilic telodendrimers that aggregate to form nanocarriers characterized by a hydrophobic core and a hydrophilic exterior. The nanocarrier core may include amphiphilic functionality such as cholic acid or cholic acid derivatives, and the exterior may include branched or linear poly(ethylene glycol) segments. Nanocarrier cargo such as hydrophobic drugs and other materials may be sequester in the core via non-covalent means or may be covalently bound to the telodendrimer building blocks. Telodendrimer structure may be tailored to alter loading properties, interactions with materials such as biological membranes, and other characteristics.
Abstract:
The present invention provides a nanocarrier having an interior and an exterior, the nanocarrier comprising at least one conjugate, wherein each conjugate includes a polyethylene glycol (PEG) polymer. Each conjugate also includes at least two amphiphilic compounds having both a hydrophilic face and a hydrophobic face. In addition, each conjugate includes an oligomer, wherein at least 2 of the amphiphilic compounds are covalently attached to the oligomer which is covalently attached to the PEG. The nanocarrier is such that each conjugate self-assembles in an aqueous solvent to form the nanocarrier such that a hydrophobic pocket is formed in the interior of the nanocarrier by the orientation of the hydrophobic face of each amphiphilic compound towards each other, and wherein the PEG of each conjugate self-assembles on the exterior of the nanocarrier.
Abstract:
The present invention is directed to bladder cancer specific ligand peptides, comprising the amino acid sequence X1DGRX5GF (SEQ ID NO:1), and methods of their use, e.g., for imaging detection for diagnosis of bladder, tumor localization to guide transurethral resection of bladder cancer, imaging detection of bladder cancer for follow-up after the initial treatment that can replace or complement costly cystoscopy, imaging detection of metastatic bladder cancer, and targeted therapy for superficial and metastatic bladder cancer.
Abstract translation:本发明涉及包含氨基酸序列X1DGRX5GF(SEQ ID NO:1)的膀胱癌特异性配体肽及其使用方法,例如用于膀胱诊断的成像检测,用于引导膀胱经尿道切除的肿瘤定位 癌症,成像检测膀胱癌的初步治疗后的后续可以替代或补充昂贵的膀胱镜检查,成像检测转移性膀胱癌和靶向治疗浅表和转移性膀胱癌。