Abstract:
A semiconductor device is provided as follows. A first fin-type pattern is disposed on a substrate. A first field insulating film is adjacent to a sidewall of the first fin-type pattern. A second field insulating film is adjacent to a sidewall of the first field insulating film. The first field insulating film is interposed between the first fin-type pattern and the second field insulating film. The second field insulating film comprises a first region and a second region. The first region is closer to the sidewall of the first field insulating film. A height from a bottom of the second field insulating film to an upper surface of the second region is larger than a height from the bottom of the second field insulating film to an upper surface of the first region.
Abstract:
A program method of a memory device include determining whether valid data is stored in memory cells of a word line adjacent to a selection word line upon which a program operation is to be performed; when the valid data is not stored in the memory cells of the word line adjacent to the selection word line, performing, based on data to be written to the selection word line, a pre-program operation on the word line adjacent to the selection word line; and after the performing of the pre-program operation, performing, based on a program command, the program operation on the selection word line.
Abstract:
A semiconductor device including: a first gate pattern disposed in a peripheral region of a substrate; a second gate pattern disposed in a cell region of the substrate; a first insulator formed on sidewalls of the first gate pattern; and a second insulator formed on sidewalls of the second gate pattern, wherein a dielectric constant of the first insulator is different from a dielectric constant of the second insulator, and wherein a height of the second insulator is greater than a height of the second gate pattern.
Abstract:
A method in an electronic device includes receiving an input pattern, identifying a pattern identification (ID) from the input pattern, determining a counterpart electronic device corresponding to the pattern ID, and establishing a wireless connection with the corresponding electronic device. An electronic device includes a wireless communication unit configured to perform wireless communication with one or more other electronic devices, a pattern input unit configured to receive an input pattern, and a processor configured to identify a pattern from the input pattern, determine a counterpart electronic device with an ID corresponding to the pattern, and cause the wireless communication unit to wirelessly connect with the counterpart electronic device. Also, other embodiments are disclosed.
Abstract:
A storage device includes a non-volatile memory configured to store an encryption key and a data key encrypted with the encryption key, writes data using the data key, and reads the data using the data key; and a storage controller, wherein the storage controller is configured to receive a first security setting command which allows access to the data key, using a first password, generates a first key on the basis of the first password in response to the first security setting command, encrypts the encryption key with the first key to generate a first encrypted encryption key, encrypts the first key with the encryption key to generate an encrypted first key, and stores the first encrypted encryption key and the encrypted first key in the non-volatile memory.
Abstract:
A semiconductor device is provided as follows. A first fin-type pattern is disposed on a substrate. A first field insulating film is adjacent to a sidewall of the first fin-type pattern. A second field insulating film is adjacent to a sidewall of the first field insulating film. The first field insulating film is interposed between the first fin-type pattern and the second field insulating film. The second field insulating film comprises a first region and a second region. The first region is closer to the sidewall of the first field insulating film. A height from a bottom of the second field insulating film to an upper surface of the second region is larger than a height from the bottom of the second field insulating film to an upper surface of the first region.
Abstract:
Provided are a method of fabricating a light-emitting apparatus with improved light extraction efficiency and a light-emitting apparatus fabricated using the method. The method includes: preparing a monocrystalline substrate; forming an intermediate structure on the substrate, the intermediate structure comprising a light-emitting structure which comprises a first conductive pattern of a first conductivity type, a light-emitting pattern, and a second conductive pattern of a second conductivity type stacked sequentially, a first electrode which is electrically connected to the first conductive pattern, and a second electrode which is electrically connected to the second conductive pattern; forming a polycrystalline region, which extends in a horizontal direction, by irradiating a laser beam to the substrate in the horizontal direction such that the laser beam is focused on a beam-focusing point within the substrate; and cutting the substrate in the horizontal direction along the polycrystalline region.
Abstract:
Provided are a method of fabricating a light-emitting apparatus with improved light extraction efficiency and a light-emitting apparatus fabricated using the method. The method includes: preparing a monocrystalline substrate; forming an intermediate structure on the substrate, the intermediate structure comprising a light-emitting structure which comprises a first conductive pattern of a first conductivity type, a light-emitting pattern, and a second conductive pattern of a second conductivity type stacked sequentially, a first electrode which is electrically connected to the first conductive pattern, and a second electrode which is electrically connected to the second conductive pattern; forming a polycrystalline region, which extends in a horizontal direction, by irradiating a laser beam to the substrate in the horizontal direction such that the laser beam is focused on a beam-focusing point within the substrate; and cutting the substrate in the horizontal direction along the polycrystalline region.