Abstract:
An electrophotographic image forming apparatus is provided including a body including an opening, a photoreceptor cartridge attached to, or detached from, the body through the opening and including a mounting portion, a development cartridge attached to, or detached from, the mounting portion through the opening when the photoreceptor cartridge is mounted in the body, and a cover opening or closing the opening and fixing the development cartridge to the mounting portion by pressurizing the development cartridge while the opening is closed.
Abstract:
Methods of operating nonvolatile memory devices include reading a first plurality of multi-bit nonvolatile memory cells in the nonvolatile memory device using a first plurality of read voltages to thereby generate first read data, and then rereading the first plurality of multi-bit nonvolatile memory cells using a second plurality of read voltages that differ, at least in part, from the first plurality of read voltages, to thereby generate second read data. An operation is then undertaken to perform first and second ECC decoding operations on the first and second read data, respectively, to thereby identify whether the first read data or the second read data more accurately reflects data stored in the first plurality of multi-bit nonvolatile memory cells during the reading and rereading.
Abstract:
An electronic system electronic device includes: an internal battery, an external battery, a memory and a plurality of function modules. The internal battery is configured to generate a first power signal. The external battery is configured to be separated from the electronic device, and to generate a second power signal. The memory is configured to operate based on the first power signal. The plurality of function modules are configured to operate based on the second power signal.
Abstract:
An apparatus and method for sensing body information is provided. The apparatus includes: a light-emitting device configured to emit a light signal toward an object that is to be sensed; a light-receiving device configured to detect a reflected light signal reflected from the object; an image sensor configured to detect the reflected light signal reflected from the object; and a controller configured to selectively drive at least one of the light-receiving device and the image sensor according to a distance between the object and the light-emitting device and to sense volume information or blood flow information of the object by using the reflected light signal.
Abstract:
A view sensor, a home control system including the view sensor, and a method of controlling the home control system are provided. The view sensor includes: a lens unit configured to receive light in order to capture an image or project light in order to display the image; an image acquirer configured to acquire the image by using the light received from the lens unit; a projector configured to provide light to the lens unit in order to display the image; a beam splitter configured to provide the image acquirer with the light received from the lens unit or transmit the light generated by the projector to the lens unit; and a controller configured to, in response to the image being captured, control the beam splitter to provide the image acquirer with the light received from the lens and, in response to the image being displayed, control the beam splitter to provide the lens unit with the light generated by the projector.
Abstract:
Disclosed are a display apparatus and a control method thereof, the display apparatus including: a display unit which includes a plurality of pixels with an organic light emitting diode (OLED); a power supply which supplies power to the display unit; an image processor which processes an image signal in accordance with the plurality of pixels; and a controller which divides the frame into a plurality of sub-frames, assigns bit weights to each of the divided sub-frames, and controls the power supply to supply a voltage which is adjusted by the assigned bit weights in accordance with the sub-frames to the display unit.
Abstract:
Provided is a video processing method and apparatus. The video processing method includes acquiring an input video including a plurality of video frames and audio frames; dividing the input video into one or more sections; determining a representative video frame from among the plurality of video frames with respect to each of the one or more sections; and acquiring a slide video that includes the representative video frames.
Abstract:
An electrophotographic image forming apparatus includes for example a toner supply unit including a toner containing unit and a toner discharging unit having a toner outlet; a photoreceptor unit including a photoreceptor; a development unit including a development roller that supplies toner to develop the electrostatic latent image on the photoreceptor and a supply roller that supplies toner to the development roller; a first toner supply member that supplies toner of the toner containing unit to the toner discharging unit; and a second toner supply member that transports toner of the toner discharging unit to the toner outlet. The first toner supply member is located in a second quadrant from among first through fourth quadrants based on a vertical line and a horizontal line which intersect at the second toner supply member, and the photoreceptor, the supply roller, and the development roller are located in the fourth quadrant.
Abstract:
A cartridge unit to discharge toner via a toner outlet and an electrophotographic image forming apparatus are provided. The cartridge unit includes a shutter unit movable between an opening position in which the toner outlet is opened and a closing position in which the toner outlet is closed in a first direction, and a lever unit movable in a second direction across the first direction, and connected to the shutter unit such that the shutter unit moves in the first direction when the lever unit moves in the second direction.
Abstract:
A developing unit employing a two-component developing agent is shown. The developing unit includes a first regulating member, a second regulating member, and a third regulating member forming first, second, and third regulating gaps respectively with a developing roller. The third regulating member forms a recovery path for recovering excessive developing agent that may not pass through the first and second regulating gaps to an agitating region between the third and second regulating members. A distance between a vertical line passing through an upstream side end portion of the second regulating member based on a rotating direction of the developing roller and a center of the developing roller is greater than a radius of the developing roller, and a downstream end of the third regulating member is located between a regulating pole and a catch pole.