Abstract:
A liquid crystal display is provided. The liquid crystal display includes: a substrate; a thin film transistor; a pixel electrode; a roof layer; a plurality of microcavities; and a partition wall. The thin film transistor is disposed on the substrate. The pixel electrode is disposed on the thin film transistor. The roof layer faces the pixel electrode. The microcavities are between the pixel electrode and the roof layer, the microcavities include a liquid crystal material. The partition wall is between the microcavities, and the partition wall is perpendicular to the roof layer.
Abstract:
A display panel includes a gate electrode and a gate line on a substrate, a gate insulating layer and an active layer sequentially on the gate electrode and the gate line, a planarization layer which is on the substrate and compensates for a step difference between the substrate, and the gate electrode and the gate line, respectively, source and drain electrodes on the active layer overlapping the gate electrode and spaced apart from each other, a data line on the active layer and crossing the gate line, a protective layer which covers the planarization layer, the source and drain electrodes, and the data line, a contact hole defined in the planarization layer and partially exposing the drain electrode, and a pixel electrode on the protective layer and electrically connected to the drain electrode through the contact hole.
Abstract:
A method of manufacturing a liquid crystal display includes disposing a gate electrode and a light blocking member on a substrate, disposing a source electrode and a drain electrode on the gate electrode to form a thin film transistor, disposing a data line on the light blocking member, disposing an organic layer on the thin film transistor and the data line, exposing a first convex part of the organic layer to light in a first area corresponding to the thin film transistor during an exposure process, and exposing a second convex part of the organic layer to the light in a second area corresponding to the data line during the exposure process using a mask. The mask includes a first transflective part aligned with the first area and a second transflective part aligned with the second area during the exposure process.
Abstract:
An exposure mask includes a first transmission portion, a second transmission portion, and a blocking portion. The first transmission portion is configured to, when illuminated with light, transmit the light at a first energy level. The first transmission portion is disposed in association with formation of a first contact hole in an underlying layer. The second transmission portion is configured to, when illuminated with the light, transmit the light at a second energy level. The second transmission portion is disposed in association with formation of a second contact hole in the underlying layer. The blocking portion is configured to block the light, and is disposed in association with a boundary region between a first region and a second region of the underlying layer. The second transmission portion is further configured to enable the second contact hole to be formed deeper into the underlying layer than the first contact hole.
Abstract:
A display device includes: a substrate; a plurality of transistors disposed on the substrate; an insulating layer disposed on the plurality of transistors; a data line and a driving voltage line disposed on the insulating layer; a pixel electrode disposed on the data line or the driving voltage line; a pixel defining layer disposed on the pixel electrode and including a pixel opening that overlaps the pixel electrode; a light emitting element layer disposed in the pixel opening; and a common electrode disposed on the light emitting element layer, wherein the pixel opening includes a first sub-pixel opening and a second sub-pixel opening and a first blocking portion that is disposed between the first sub-pixel opening and the second sub-pixel opening.
Abstract:
A display device includes a display panel with a light emitting area from which a light exits and an input sensor disposed on the display panel. The input sensor includes a first conductive layer, a first insulating layer disposed on the first conductive layer and provided with a diffraction grating defined therein to correspond to the light emitting area, and a second conductive layer disposed on the first insulating layer and connected to the first conductive layer. The first insulating layer includes an organic layer covering the first conductive layer and an inorganic layer disposed on the organic layer. The organic layer and the inorganic layer include a plurality of holes defined therein to define the diffraction grating.
Abstract:
A photopolymerizable resin composition includes a first layer and a second layer; and a barrier layer disposed between the first layer and the second layer, the barrier layer includes one or more of SiNx, SiOx, SiON, Mo, a Mo oxide, Cu, a Cu oxide, Al, an Al oxide, Ag, and a Ag oxide.
Abstract:
A display device includes a display panel with a light emitting area from which a light exits is defined and an input sensor disposed on the display panel. The input sensor includes a first conductive layer, a first insulating layer disposed on the first conductive layer and provided with a diffraction grating defined therein to correspond to the light emitting area, and a second conductive layer disposed on the first insulating layer and connected to the first conductive layer. The first insulating layer includes an organic layer covering the first conductive layer and an inorganic layer disposed on the organic layer. The organic layer and the inorganic layer include a plurality of holes defined therein to define the diffraction grating.
Abstract:
A display device includes: a substrate on which is disposed: an organic light emitting element which generates and emits light with which an image is displayed; a thin film transistor connected to the organic light emitting element and with which the organic light emitting element is controlled to emit the light; an interlayer insulating layer disposed between the thin film transistor and the organic light emitting element, the interlayer insulating layer including an organic material; and a capping layer disposed between the interlayer insulating layer and the organic light emitting element, the capping layer including an inorganic material. The interlayer insulating layer disposed between the thin film transistor and the organic light emitting element does not have photosensitivity and does not include sulfur.
Abstract:
A touch display panel including a thin-film transistor substrate including a thin-film transistor, a pixel defining layer disposed on the thin-film transistor substrate and including a first opening, a light emitting structure disposed in the first opening, a thin film encapsulation layer covering the light emitting structure and the pixel defining layer, a first metal pattern disposed on the thin film encapsulation layer, a first insulation pattern disposed on the first metal pattern and having the same shape as the first metal pattern in a plan view, a second metal pattern disposed on the first insulation pattern, and a second insulation layer disposed on the second metal pattern and the thin film encapsulation layer and covering the first metal pattern, the first insulation pattern and the second metal pattern.