Abstract:
A display device may include the following elements: a plurality of gate lines extending in a first direction; a plurality of data lines extending in a second direction; a gate driver configured for applying gate signals to the gate lines; a data driver configured for applying data voltages to the data lines; a plurality of pixels electrically connected to the plurality of gate lines and the plurality of data lines; and a control wire set that traverses overlaps an area of a first pixel of the plurality of pixels, electrically interconnects the gate driver and the data driver, and is configured to transmit a control signal from the data driver to the gate driver.
Abstract:
A liquid crystal display includes: a first substrate; a pixel electrode disposed on the first substrate; a second substrate facing the first substrate; a common electrode disposed on the second substrate; and a liquid crystal layer disposed between the first substrate and the second substrate. The common electrode includes a first cross-shaped cutout overlapping the pixel electrode, and a second cutout parallel to an edge of the pixel electrode, the second cutout being separated from the edge of the pixel electrode.
Abstract:
A liquid crystal display includes: a substrate; a thin film transistor on the substrate; a pixel electrode connected with a terminal of the thin film transistor; a microcavity on the pixel electrode, and including a plurality of regions corresponding a pixel area; a liquid crystal layer in the microcavity; a liquid crystal injection hole exposing the microcavity; a common electrode on the microcavity; a supporting member on the common electrode; and a capping layer on the supporting member and covering the liquid crystal injection hole. The pixel electrode is connected with the terminal of the thin film transistor through a contact hole, and the contact hole is within the pixel area.
Abstract:
A liquid crystal display includes: a first substrate, a second substrate facing the first substrate, a liquid crystal layer interposed between the first substrate and the second substrate and including liquid crystal molecules, a gate line positioned on the first substrate, a data line positioned on the first substrate and crossing the gate line, a first thin film transistor and a second thin film transistor connected to the gate line and the data line, a third thin film transistor connected to the gate line and the second thin film transistor, a reference voltage line connected to the third thin film transistor, and a pixel electrode including a first subpixel electrode connected to the first thin film transistor and a second subpixel electrode connected to the second thin film transistor.
Abstract:
A liquid crystal display includes: a first substrate; a pixel electrode disposed on the first substrate; a second substrate facing the first substrate; a common electrode disposed on the second substrate; and a liquid crystal layer disposed between the first substrate and the second substrate. The common electrode includes a first cross-shaped cutout overlapping the pixel electrode, and a second cutout parallel to an edge of the pixel electrode, the second cutout being separated from the edge of the pixel electrode.
Abstract:
A liquid crystal lens includes a first lens electrode, a second lens electrode, bus lines, and a contact portion. The first lens electrode is disposed in at least a display area of the liquid crystal lens. The second lens electrode is disposed in at least the display area. The bus lines are disposed in a peripheral area of the liquid crystal lens, the peripheral area being disposed outside the display area, the first lens electrode and the second lens electrode being connected to respective ones of the bus lines. The contact portion overlaps the bus lines and electrically connects the respective bus lines to the first lens electrode and the second lens electrode.
Abstract:
A display device includes: a substrate; a plurality of transistors disposed on the substrate; an initialization voltage line disposed on the substrate and including a first initialization voltage line that extends in a first direction, and a second initialization voltage line that extends in a second direction; and a driving voltage line disposed on the substrate and extending in the second direction, wherein each of the first initialization voltage line and the driving voltage line is connected to at least one of the plurality of transistors, and the second initialization voltage line and the driving voltage line overlap each other.
Abstract:
A display apparatus includes a display area extending in a first direction and a second direction, first to fourth sub-pixels, and a spacer. The first sub-pixel emits a first color light, and includes first and second sides extending in a third direction inclined at a predetermined angle with the first direction, and third and fourth sides extending in a fourth direction perpendicular to the third direction. The second sub-pixel emits a second color light, and is disposed adjacent to the second side of the first sub-pixel in the fourth direction. The third sub-pixel emits a third color light, and is disposed adjacent to the fourth side of the first sub-pixel in the third direction. The fourth sub-pixel emits the first color light, and is disposed adjacent to the second and third sub-pixels. The spacer is disposed between the first and second sub-pixels and between the third and fourth sub-pixels.
Abstract:
A display apparatus includes a plurality of pixels arranged in columns and rows in a display area, a data line extending in a first direction and connected with pixels of a k-th column (‘k’ is a natural number) and a (k+1)-th column, a gate line extending in a second direction crossing the first direction and connected with ones of the pixels, a gate signal line extending in the first direction and connected with the gate line, and a gate driver in a first peripheral area adjacent to a first longer side of the display area and having a first width, and configured to apply a gate signal to the gate line.
Abstract:
Provided is a liquid crystal display device including: a substrate; a first gate line; a first data line and a second data line to which data voltages with different polarities are applied; a first pixel electrode connected to the first gate line and the first data line; a liquid crystal layer formed on the first pixel electrode; and a first common electrode and a second common electrode disposed on the liquid crystal layer, in which the first pixel electrode includes a first subpixel electrode overlapping with the first common electrode and a second subpixel electrode overlapping with the second common electrode. A first voltage and A second voltage are alternatingly applied to the first common electrode and the second common electrode every two or more frames, respectively.