Abstract:
The present invention relates to a thin film transistor array panel, a liquid crystal display, and a method capable of reducing an effect on neighboring pixels in a process of repairing a pixel defect. The thin film transistor array panel may include: a thin film transistor connected to a gate line and a data line to define a pixel area; a pixel electrode formed in the pixel area and connected to the thin film transistor; and a storage electrode including a first portion overlapping the data line between two adjacent gate lines. The storage electrode may also include a second portion connected to the first portion and enclosing an edge of the pixel area except for a region where the first portion is formed. The storage electrode may be branched between pixel electrodes respectively formed in two adjacent pixel areas.
Abstract:
A thin film transistor array panel includes a gate line and the driver connection line formed with the same layer material, a data line and a driving pad formed with the same layer material, a first field generating electrode and a connecting member formed with the same layer material, and a second field generating electrode and a dummy electrode layer formed with the same layer material.
Abstract:
A method of repairing a short of a pixel electrode and a storage electrode including irradiating laser to separate a portion shorted to the pixel electrode among the storage electrode to be disconnected, in which the storage electrode includes a first portion overlapping a data line between two adjacent gate lines and a second portion connected to the first portion and enclosing an edge of a pixel area except for a region where the first portion is formed, the pixel area is defined by the data line and a gate line, a thin film transistor is coupled to the data line, the gate line, and the pixel electrode, and two adjacent pixel areas are defined by the two adjacent gate lines and two adjacent data lines, and the storage electrode is branched between pixel electrodes respectively formed in the two adjacent pixel areas.
Abstract:
A display device includes a plurality of pixels arranged in a column direction and in a row direction, as well as a data line connected to a pixel of a k-th column (where ‘k’ is a natural number) and a (k+1)-th column in an odd-numbered row of the pixels, and connected to a pixel of a (k−1)-th column and a (k+2)-th column in an even-numbered row of the pixels. A data driving part is configured to apply a data signal to the data lines.
Abstract:
A method to repair a data line in a thin film transistor array panel includes, if the data line is disconnected at a disconnection portion, irradiating a laser on at least one side of the disconnected portion of the data line to short the data line and a storage electrode, and irradiating the laser to separate a portion shorted to the data line among the storage electrode to be disconnected. The storage electrode includes a first portion overlapping the data line between two adjacent gate lines and a second portion connected to the first portion and enclosing an edge of a pixel area except for a region where the first portion is formed. Two adjacent pixel areas are defined by the two adjacent gate lines and two adjacent data lines, and the storage electrode is branched between pixel electrodes.
Abstract:
A display apparatus includes a plurality of pixels arranged in columns and rows in a display area, a data line extending in a first direction and connected with pixels of a k-th column (‘k’ is a natural number) and a (k+1)-th column, a gate line extending in a second direction crossing the first direction and connected with ones of the pixels, a gate signal line extending in the first direction and connected with the gate line, and a gate driver in a first peripheral area adjacent to a first longer side of the display area and having a first width, and configured to apply a gate signal to the gate line.
Abstract:
Embodiments of the present disclosure provide a thin-film transistor (TFT) panel structured to prevent the deterioration of image quality due to the luminance change of backlight. According to an embodiment, the TFT panel includes: an insulating substrate; a first gate line and a first data line which are formed on the insulating substrate to be insulated from each other and cross each other; a first subpixel electrode which is formed on the insulating substrate and connected to the first gate line and the first data line by a first TFT; a second subpixel electrode which is formed on the insulating substrate and separated from the first subpixel electrode; a connecting electrode which is directly connected to any one of the first and second subpixel electrodes and capacitively coupled to the other one of the first and second subpixel electrodes; a semiconductor pattern which is formed between the connecting electrode and the insulating substrate; and a light-shielding pattern which is formed between the semiconductor pattern and the insulating substrate, is overlapped by the connecting electrode, and blocks light.
Abstract:
A display apparatus includes a plurality of pixels arranged in columns and rows in a display area, a data line extending in a first direction and connected with pixels of a k-th column (‘k’ is a natural number) and a (k+1)-th column, a gate line extending in a second direction crossing the first direction and connected with ones of the pixels, a gate signal line extending in the first direction and connected with the gate line, and a gate driver in a first peripheral area adjacent to a first longer side of the display area and having a first width, and configured to apply a gate signal to the gate line.
Abstract:
A thin film transistor array panel includes a gate line and the driver connection line formed with the same layer material, a data line and a driving pad formed with the same layer material, a first field generating electrode and a connecting member formed with the same layer material, and a second field generating electrode and a dummy electrode layer formed with the same layer material.
Abstract:
A display substrate includes a gate line extended in one direction of a base substrate, a first data line extended in a direction crossing the gate line, a transverse storage line extended in the extending direction of the gate line and crossing the first data line, a longitudinal storage line extended in the extending direction of the first data line and crossing the transverse storage line, a portion of an overlapping area between the longitudinal storage line and the transverse storage line is exposed in a contact part region having an opening partially exposing the transverse storage line. A contact electrode covers the contact part opening and makes electrical contact with each of the transverse storage line and the longitudinal storage line.