Abstract:
A display device and a manufacturing method thereof are disclosed. The display device may include a pixel circuit layer including a plurality of transistors, a first partition wall and a second partition wall on the pixel circuit layer, and each protruding in a thickness direction, a first electrode and a second electrode formed on the same layer, and on the first partition wall and the second partition wall, respectively; a light emitting element between the first electrode and the second electrode; and a first organic pattern directly on the light emitting element.
Abstract:
A display apparatus including: a base substrate; a first active pattern disposed on the base substrate, a first insulating layer disposed on the first active pattern; a first gate electrode disposed on the first insulating layer; a second insulating layer disposed on the first gate electrode; a ring dummy pattern disposed on the second insulating layer; a third insulating layer disposed on the second insulating layer; and a first drain electrode disposed on the third insulating layer, and electrically connected to the first active pattern through a contact hole which is formed through the third insulating layer, the second insulating layer and the first insulating layer, wherein the first drain electrode is disposed in an opening of the ring dummy pattern.
Abstract:
A light emitting device includes a substrate. A thin film transistor is disposed on the substrate. A first electrode is connected to the thin film transistor. A second electrode at least partially overlaps the first electrode. A first partition wall is disposed between the first electrode and the second electrode. An insulating layer is disposed between the thin film transistor and the first electrode. The insulating layer includes a first part having a first thickness and a second part having a second thickness that is different than the first thickness. The second part of the insulating layer at least partially overlaps the first partition wall.
Abstract:
A thin film transistor substrate includes a gate electrode on a base substrate, an active pattern on the gate electrode, a source electrode on a first end of the active pattern, a drain electrode on a second end of the active pattern, an organic insulation layer on the source electrode and the drain electrode, and a transparent electrode contacting the drain electrode through a contact opening in the organic insulation layer. The drain electrode is spaced from the source electrode. The organic insulation layer includes a first thickness portion around the contact opening and a second thickness portion adjacent to the first thickness portion. The second thickness portion has a thickness greater than that of the first thickness portion.
Abstract:
A display panel includes: a substrate including red, green, blue and white sub-pixel areas; red, green and blue color filter layers respectively in the red, green and blue sub-pixel areas; and a dummy color filter layer in the white sub-pixel area. The dummy color filter layer is adjacent to at least one of the red color filter layer, the green color filter layer, and the blue color filter layer, and the dummy color filter layer forms a step with the adjacent color filter layer.
Abstract:
A photoresist composition includes about 0.1 to about 30 parts by weight of a photo-initiator, about 1 to 50 parts by weight of a first acrylate monomer including at least five functional groups, about 1 to 50 parts by weight of a second acrylate monomer including at most four functional groups with respect to about 100 parts by weight of an acryl-copolymer.
Abstract:
A thin film transistor substrate includes a gate electrode on a base substrate, an active pattern on the gate electrode, a source electrode on a first end of the active pattern, a drain electrode on a second end of the active pattern, an organic insulation layer on the source electrode and the drain electrode, and a transparent electrode contacting the drain electrode through a contact opening in the organic insulation layer. The drain electrode is spaced from the source electrode. The organic insulation layer includes a first thickness portion around the contact opening and a second thickness portion adjacent to the first thickness portion. The second thickness portion has a thickness greater than that of the first thickness portion.