Abstract:
An apparatus and method for compensating color characteristics in individual display devices that each include a display unit including a plurality of pixels to display images according to compensated image data signals, a test data input section to transmit a predetermined test image data signal to the pixels to display a test image, a luminance measuring unit to receive luminance information from the display unit displaying the test image and determine actual luminance ratios of a first color, a second color, and a third color from the received luminance information, a compensation ratio determiner to calculate a compensation ratio from both the actual and reference luminance ratios of each color and a data compensator to generate the compensated image data signals by adjusting external input video signals according to the compensation ratio.
Abstract:
A method of controlling a dimming operation is disclosed. In one aspect, the method includes determining the brightness of an input image frame based on input image data, determining an input dimming value based on the brightness of the input image frame, selectively performing the dimming operation is based on a comparison of an absolute value of a difference between the input dimming value and a current output dimming value against a predetermined threshold value, where a value generated by adjusting the current output dimming value by a predetermined adjustment value is output as a next output dimming value when performing the dimming operation, and the input dimming value is output as the next output dimming value when not performing the dimming operation.
Abstract:
A 3-dimensional (3D) flat panel display with a built-in touch screen panel includes a first substrate, a plurality of pixels on the first substrate, a plurality of first electrode patterns spaced apart from one another at a first predetermined interval along a first direction, the plurality of first electrode patterns for driving the plurality of pixels, a second substrate positioned to face the first substrate, and a plurality of barrier patterns formed on an outer surface of the second substrate and spaced apart from one another at a second predetermined interval along a second direction, intersecting the first direction. At least one of the plurality of first electrode patterns and at least one barrier pattern of the plurality of barrier patterns serve as electrodes for the built-in touch screen panel.
Abstract:
A controller for a display device includes an adjuster and a compensator. The adjuster adjusts at least one parameter of a modeling equation based on a measured current of a pixel. The modeling equation including the at least one adjusted parameter is indicative of a real time degree of degradation of the pixel. The compensator compensates for image data corresponding to emission of light from the pixel.
Abstract:
A method of manufacturing a polarizer includes forming a first layer on a base substrate, forming a first partition wall layer on the first layer, forming a second partition wall layer on the first partition wall, forming a plurality of first partition wall patterns and a plurality of second partition walls disposed on the first partition wall patterns by etching the first partition wall and the second partition wall at the same time, forming a block copolymer layer on the first layer on which the plurality of first partition wall patterns are formed, forming a plurality of fine patterns from the block copolymer layer, and patterning the first layer using the fine patterns and the second partition wall patterns as a mask.
Abstract:
A display device includes a display panel, a source driving part, a gate driving part, a readout part and a pulse generating part. The display panel includes an array substrate on which a source line and a gate line are formed, and an opposite substrate on which a common electrode is formed. The readout part is electrically connected with at least one of the lines of the array substrate and the common electrode of the opposite substrate, and reads out a detection signal during an elimination period of a frame period. The pulse generating part outputs a control pulse for driving the readout part during the elimination period. Accordingly, a detection signal is read out through lines or a common electrode that are/is formed for displaying an image, so that an aperture ratio may be increased, and a manufacturing process thereof may be simplified.
Abstract:
There are disclosed a DC-DC converter and an organic light emitting display including the same. The DC-DC converter includes a first voltage generator that has an inductor and a plurality of transistors, and converts an input voltage into a first voltage and outputs the first voltage to a first output terminal. The DC-DC converter also includes a controller that controls driving of the first voltage generator by supplying a first driving pulse to each transistor of the first voltage generator. In the DC-DC converter, the amplitude of the first driving pulse is adjustable. Accordingly, it is possible to provide a DC-DC converter and an organic light emitting display including the same, which can achieve high power conversion efficiency by change a driving pulse used in a DC-DC converter.
Abstract:
A mobile device including a first display, a second display, a foldable coupling portion for coupling the first display to the second display, an angle sensing unit for sensing a folding angle between the first display and the second display, a direction-of-sight sensing unit for sensing a direction of sight of a user, and a controller for determining whether to use a touch input sensed by either the first display or the second display based on the sensed folding angle and the sensed direction of sight.
Abstract:
A display device includes a display panel, a source driving part, a gate driving part, a readout part and a pulse generating part. The display panel includes an array substrate on which a source line and a gate line are formed, and an opposite substrate on which a common electrode is formed. The readout part is electrically connected with at least one of the lines of the array substrate and the common electrode of the opposite substrate, and reads out a detection signal during an elimination period of a frame period. The pulse generating part outputs a control pulse for driving the readout part during the elimination period. Accordingly, a detection signal is read out through lines or a common electrode that are/is formed for displaying an image, so that an aperture ratio may be increased, and a manufacturing process thereof may be simplified.
Abstract:
An organic light emitting display device, including pixels positioned at crossing regions of scan lines and data lines and a bias voltage supply configured to supply bias voltages to the pixels. Each of the pixels includes an organic light emitting diode (OLED), a first transistor coupled between a first power supply and the OLED and driven in a saturation region by a corresponding one of the bias voltages to supply a set current to the OLED, a second transistor coupled between the first power supply and the OLED and driven in a linear region by a data signal supplied from a corresponding one of the data lines to turn on or off, and a second capacitor coupled between a gate electrode of the first transistor and the first power supply.