Abstract:
A display substrate includes a base substrate, a gate line portion, a data line portion, and a pixel portion. The base substrate includes a display area divided into first to fourth divided display areas, and first to fourth peripheral areas. The gate line portion includes a plurality of first gate lines, and a plurality of second gate lines. The data line portion includes a plurality of first data lines, and a plurality of second data lines. The pixel portion is disposed in the display area to be electrically connected to the first and second gate lines and the first and second data lines, respectively.
Abstract:
A display panel driver drives pixels based on first power having at least three voltage levels, second power having a constant voltage, and third power having two voltage levels. Each pixel includes a first transistor connected between first and second nodes and including a gate electrode to receive a scan signal, a second transistor connected between the second node and a third node in series with the first transistor and including a gate electrode to receive the third power, and a driving transistor connected between a source of the first power and the third node and including a gate electrode connected to the first electrode to control a driving current for an organic light emitting diode. A first capacitor is connected between a source of the third power and the first node, and a second capacitor is connected between the second node and one of the data lines.
Abstract:
A display panel driver drives pixels based on first power having at least three voltage levels, second power having a constant voltage, and third power having two voltage levels. Each pixel includes a first transistor connected between first and second nodes and including a gate electrode to receive a scan signal, a second transistor connected between the second node and a third node in series with the first transistor and including a gate electrode to receive the third power, and a driving transistor connected between a source of the first power and the third node and including a gate electrode connected to the first electrode to control a driving current for an organic light emitting diode. A first capacitor is connected between a source of the third power and the first node, and a second capacitor is connected between the second node and one of the data lines.
Abstract:
A display apparatus includes a plurality of pixels. Each pixel includes a first capacitor connected between a first voltage line receiving a driving signal and a first node; a first transistor comprising a control electrode connected to the first node, a first electrode connected to a second voltage line receiving a first power source signal, and a second electrode connected to a second node; an organic light emitting diode comprising an anode electrode connected to the second node and a cathode electrode receiving a second power source signal; a second capacitor connected between an m-th data line and the second node; a second transistor comprising a control electrode connected to an n-th gate line, a first electrode connected to the first node, and a second electrode connected to the second node;and a third transistor comprising a control electrode connected to an n-th scan line, a first electrode connected to the first voltage line, and a second electrode connected to the second node.
Abstract:
A liquid crystal display includes a pixel electrode including a first subpixel electrode and a second subpixel electrode spaced apart with a gap therebetween, a common electrode facing the pixel electrode, and a liquid crystal layer formed between the pixel electrode and the common electrode and including a plurality of liquid crystal molecules. The first and second subpixel electrodes include a plurality of branches, and each of the first and second subpixel electrodes includes a plurality of subregions. The branches extend in different directions in different subregions.
Abstract:
A gate driving circuit includes: a pull-up controller applying a carry signal of one of previous stages to a first node in response to the carry signal of the one of the previous stages; a pull-up part outputting a clock signal as an N-th gate output signal; a carry part outputting the clock signal as an N-th carry signal; a first pull-down part pulling down the signal at the first node to a second off voltage; a second pull-down part pulling down the N-th gate output signal to a first off voltage; an inverting part generating an inverting signal based on the clock signal and the second off voltage to output the inverting signal to an inverting node; and a reset part outputting a reset signal to the inverting node.
Abstract:
A gate driving circuit includes: a pull-up controller applying a carry signal of one of previous stages to a first node in response to the carry signal of the one of the previous stages; a pull-up part outputting a clock signal as an N-th gate output signal; a carry part outputting the clock signal as an N-th carry signal; a first pull-down part pulling down the signal at the first node to a second off voltage; a second pull-down part pulling down the N-th gate output signal to a first off voltage; an inverting part generating an inverting signal based on the clock signal and the second off voltage to output the inverting signal to an inverting node; and a reset part outputting a reset signal to the inverting node.
Abstract:
A mother substrate includes a display substrate cell defined by a scribe line, the display substrate cell including a plurality of gate lines, a gate circuit part driving the gate lines, and a gate pad part connected to the gate circuit part, a gate test pad part in a peripheral area surrounding the display substrate cell, the gate test pad part being configured to receive a gate test signal, a gate test line part connecting the gate test pad part and the gate pad part, and a switching part connected to the gate test line part and configured to control turning on and turning off of the gate test line part.
Abstract:
A display device includes: a display panel divided into a first area and a second area; a first scan driver to provide a scan signal to a pixel in the first area through a first scan line coupled to the pixel in the first area; a second scan driver to provide the scan signal to a pixel in the second area through a second scan line coupled to the pixel in the second area; a first scan switching transistor and a second scan switching transistor to couple the first scan line to the second scan line based on the scan signal, the first scan switching transistor and the second scan switching transistor being arranged between the first area and the second area; a data driver to provide data signals; and a timing controller to control the first and second scan drivers and the data driver.
Abstract:
A display apparatus includes a plurality of gate lines, a plurality of data lines, and a plurality of pixels. Each pixel of the plurality of pixels comprises a switching device coupled to a corresponding gate line of the plurality of gate lines and to a corresponding data line of the plurality of data lines, a micro-electro-mechanical system coupled to an output electrode of the switching device, and a control device coupled to the output electrode of the switching device. The control device comprises a storage capacitor coupled to the output electrode of the switching device and a coupling capacitor coupled to the output electrode of the switching device, the storage capacitor connected in parallel with the coupling capacitor. The output electrode of the switching device, the storage capacitor, the coupling capacitor, and a first electrode of the micro-electro-mechanical system are all directly connected to each other.