Abstract:
A display device configured to control an aggregation position of an alignment layer and a manufacturing method thereof are disclosed. The device includes a substrate including pixel areas; a thin film transistor formed on the substrate; a pixel electrode connected to the thin film transistor and formed on the pixel area; a roof layer formed above the pixel electrode and separated from the pixel electrode by a micro-cavity; a first injection hole formed in the roof layer and extending to a first edge and/or a second edge of the micro-cavity; a second injection hole formed in the roof layer and extending to a left edge and a right edge of the micro-cavity; a liquid crystal layer in the micro-cavity; and an encapsulation layer formed on the roof layer to cover the first injection hole and the second injection hole.
Abstract:
Provided is a display device including: a first substrate including a display area, and a non-display area surrounding the display area; a second substrate disposed on the first substrate, and facing the first substrate; a first color filter disposed between the first substrate and the second substrate, and including a first opening exposing the second substrate in the non-display area; and a refractive layer disposed between the first substrate and the first color filter to overlap the display area and the non-display area and to fill the first opening in the non-display area.
Abstract:
An exemplary embodiment of the present invention provides a liquid crystal display including: a substrate; a thin film transistor disposed on the substrate to be connected to a gate line extending in a first direction and a data line extending in a second direction; a pixel electrode connected to the thin film transistor; a roof layer positioned over the pixel electrode; a liquid crystal layer disposed in a plurality of microcavities formed between the pixel electrode and the roof layer; an inorganic insulating layer disposed to overlap the microcavities; and an overcoat disposed on the roof layer, wherein the inorganic insulating layer includes a first portion overlapping the roof layer and a second portion that does not overlap the roof layer, and a length of the second portion in the second direction is about 20 μm or more.
Abstract:
An exemplary embodiment provides a display device and a manufacturing method thereof. A display device according to the exemplary embodiment includes: a substrate; a thin film transistor disposed on the substrate; a first electrode connected to the thin film transistor; a roof layer disposed on the first electrode and spaced apart from the first electrode by interposing a microcavity therebetween; a liquid crystal layer positioned inside the microcavity; an encapsulation layer positioned on the roof layer; and a barrier layer covering an upper surface and a lateral surface of the encapsulation layer, wherein a lateral surface of the barrier layer includes a thermal distortion portion.
Abstract:
A display device according to an exemplary embodiment includes: a substrate including a display area and a peripheral area; a thin film transistor positioned in the display area of the substrate; a first electrode connected to the thin film transistor; a roof layer positioned on the first electrode and spaced apart from the first electrode by a microcavity that is interposed between the roof layer and the first electrode; a liquid crystal layer positioned inside the microcavity; an encapsulation layer positioned on the roof layer; a pad portion positioned in the peripheral area of the substrate; and a pillar positioned in the peripheral area of the substrate.
Abstract:
A liquid crystal display according to an exemplary embodiment of the present disclosure includes: a substrate; a thin film transistor disposed on the substrate; a pixel electrode connected to the thin film transistor; a roof layer facing the pixel electrode; a liquid crystal layer including liquid crystal molecules disposed in a plurality of cavities between the pixel electrode and the roof layer; and wherein the roof layer comprises a partition, which extends substantially parallel to a gate line connected to the thin film transistor.
Abstract:
A display device may include a substrate and a first roof layer portion that is formed of a roof layer material and overlaps the substrate in a direction, the direction is perpendicular to a surface of the substrate. A lateral surface of the first roof layer portion is disposed in a plane. The display device may further a second roof layer portion formed of the roof layer material and separated from the first roof layer portion. The display device may further a common electrode portion disposed between the first roof layer portion and the substrate in the direction. A lateral surface of the common electrode portion is disposed in the plane or is spaced from the lateral surface of the first roof layer portion in a second direction parallel to the surface of the substrate. The display device may further a pixel electrode disposed between the first common electrode portion and the substrate.
Abstract:
Embodiments of the present invention provide a curved display device including: a display panel; and a protection pattern coupled to the display panel, wherein the protection pattern includes a plurality of first patterns and second patterns connecting adjacent first patterns, and the second patterns have arcuate shapes when the display panel is flat. According to embodiments of the present invention, the panel is prevented from being bent beyond a threshold curvature by the protection pattern, thereby preventing damage to the panel.
Abstract:
A manufacturing method of a liquid crystal display includes: providing a pixel electrode on an insulation substrate; providing a sacrificial layer on the pixel electrode; providing a common electrode on the sacrificial layer; providing a photoresist layer on the common electrode; exposing a portion of the photoresist layer, common electrode and the sacrificial layer with light; developing the portion of the photoresist layer exposed with the light; etching a layer between the photoresist layer and the sacrificial layer using the developed photoresist layer as a mask to expose the portion of the sacrificial layer exposed with the light; removing the portion of the sacrificial layer exposed with the light; providing a roof layer on the insulation substrate and etching the roof layer to form a liquid crystal injection hole therein; and removing the sacrificial layer exposed through the liquid crystal injection hole to form a microcavity.
Abstract:
Provided are a liquid crystal display and a method for fabricating the same.The liquid crystal display comprises a substrate having a plurality of pixel areas;a first electrode formed on the substrate in the unit of a pixel area; a fine space layer positioned on the first electrode; a partition formed between the adjacent fine space layers to partition the plurality of pixel areas; a roof layer formed on the fine space layer and the partition to define the fine space layer between the substrate and the partition; and a second electrode formed on a bottom surface of the roof layer, wherein the second electrode comes in contact with an upper surface of the partition.