Abstract:
A method of driving a display panel includes dividing an input image into a plurality of segments; generating flicker levels of respective ones of the segments; determining a frame rate of the display panel based on the flicker levels of the segments; and outputting a data voltage to the display panel at the frame rate.
Abstract:
A data driver including a power control part configured to control power according to mode signal determined based on an input image, a digital to analog converting part configured to convert a digital data signal into an analog data voltage, a buffering part configured to buffer the data voltage, a first switching part configured to apply the data voltage to a data line in a normal mode, when turned on, and a second switching part configured to apply a blank voltage to the data line in a blank period of a low frequency mode, when turned on.
Abstract:
A method of driving an electro wetting display panel includes applying a first data voltage to a pixel part of the display panel during a first section of a frame and applying a second data voltage different from the first data voltage to the same pixel part during a second section of the frame. The first data voltage is converted from display data based on a first gamma curve. The second data voltage is converted from the display data based on a second gamma curve. Light transmittance through the pixel part is changed based on movement of a fluid within the pixel part.
Abstract:
A gate driver includes stages configured to output gate signals and gate initialization signals. Here, an Nth stage includes a first output block configured to generate an Nth carry signal based on an N−1th carry signal and to generate an Nth gate initialization signal based on the N−1th carry signal, an output enable signal, and an output disable signal that is an inverted signal of the output enable signal; and a second output block configured to generate an Nth gate signal by shifting the Nth gate initialization signal by a horizontal time, where N is a positive integer.
Abstract:
A display device includes a display panel, a controller, a power supplier, and an initialization voltage generator. The controller generates a power control signal based on an input image. The power supplier generates a variable driving voltage that is changed based on the power control signal. The initialization voltage generator changes an initialization voltage to initialize the pixels based on the variable driving voltage.
Abstract:
A scan driver of an organic light emitting diode (OLED) display device includes a plurality of sequentially-connected stages each connected to a plurality of pixels through a plurality of first-scan lines and a plurality of second-scan lines. Each stage of the sequentially-connected stages includes a common driver and a sub-driver unit. The common driver is configured to concurrently provide a common first-scan signal to the first-scan lines of the stage in response to at least a first initialization signal and a second initialization signal. The sub-driver unit is configured to serially provide second-scan signals to the second-scan lines of the stage in response to a plurality of output enable signals, the first-scan signal, and one of the first initialization signal and the second initialization signal. An order of the serial providing of the second-scan signals to the second-scan lines is dynamically configurable based on the output enable signals.
Abstract:
A display apparatus includes a timing controller, a data driver and a display panel. The timing controller receives input image data at a first frequency substantially equal to a frame rate of an input image. The timing controller generates a data signal having the first frequency based on the input image data having the first frequency. The data driver converts the data signal into a data voltage. The display panel displays an image based on the data voltage.
Abstract:
A method of driving a display panel and display device including the same are disclosed. In one aspect, the method comprises providing input image data, generating a gamma reference voltage, generating a data voltage based on the gamma reference voltage and input image data, providing the data voltage to the display panel, and determining whether the input image data represents a still image or a video image. The method further comprises substantially periodically and alternately generating first and second common voltages when the input image data represents the still image, and providing the first and second common voltages to the display panel.
Abstract:
A method of driving a display panel includes dividing an input image into a plurality of segments; generating flicker levels of respective ones of the segments; determining a frame rate of the display panel based on the flicker levels of the segments; and outputting a data voltage to the display panel at the frame rate.
Abstract:
An electroluminescent display and a method of driving the same are disclosed. In one aspect, the display includes a display panel including a plurality of pixels configured to operate based on a first power supply voltage having a negative voltage level. The display panel is configured to generate at least one feedback voltage corresponding to an ohmic drop of the first power supply voltage. An analog-to-digital converter is configured to generate at least one digital feedback signal based on the at least one feedback voltage. An adaptive voltage controller is configured to generate a voltage control signal based on input image data, the at least one digital feedback signal, a distribution of the input image data and the ohmic drop of the first power supply voltage. A voltage converter is configured to generate the first power supply voltage based on an input voltage and the voltage control signal.