Abstract:
A method and apparatus for encoding an image is provided. An image coding unit, including a region that deviates from a boundary of a current picture, is divided to obtain a coding unit having a smaller size than the size of the image coding unit, and encoding is performed only in a region that does not deviate from the boundary of the current picture. A method and apparatus for decoding an image encoded by the method and apparatus for encoding an image is also provided.
Abstract:
A video decoding method and apparatus and a video encoding method and apparatus based on a scanning order of hierarchical data units are provided. The decoding method includes: receiving and parsing a bitstream of an encoded video; extracting from the bitstream information about a size of a maximum coding unit for decoding a picture of the encoded video, and encoding information about a coded depth and an encoding mode for coding units of the picture, wherein the size of the maximum coding unit is a maximum size of a coding unit which is a data unit for decoding the picture; and determining a hierarchical structure of the maximum coding unit and the coding units into which the picture is divided according to depths, and decoding the picture based on the coding units, by using the information about the size of the maximum coding unit and the encoding information about the coded depth and the encoded mode.
Abstract:
A method of encoding a video includes: splitting a picture into a maximum coding unit; for the maximum coding unit, determining coding units having a tree structure including coding units of coded depths and determining encoding modes for the coding units of the coded depths by performing encoding based on coding units according to depths, the coding units according to depths obtained by hierarchically splitting the maximum coding unit as a depth deepens; and outputting information about a maximum coding unit size and, for the maximum coding unit, information indicating an order of split information and skip mode information which is selectively determined for the coding units according to depths, information about the encoding modes for the coding units of the coded depths including the split information and the skip mode information which are arranged according to the order, and encoded video data.
Abstract:
A method of decoding a video including parsing AMP information indicating whether partition types include asymmetric partition types, from a bitstream of an encoded image, determining at least one coding unit included in a maximum coding unit by using split information parsed from the received bitstream, determining at least one prediction unit of a coding unit among the at least one coding unit, by using the AMP information and information about a partition type of the coding unit parsed from the received bitstream, and performing motion compensation using the prediction units for the coding unit.
Abstract:
Provided is an electronic device including a communication unit configured to receive data from a server, a display unit configured to display a first video obtained by photographing a plurality of objects having cameras mounted thereon, or second videos obtained by the objects, an input unit configured to receive a user input, and a controller configured to display the first video on the display unit, receive a user input for selecting at least one of the plurality of objects included in the first video, through the input unit, and control the display unit to display a second video obtained by the selected object, on a part or entirety of the display unit based on the user input.
Abstract:
Disclosed is an image processing apparatus. The present image processing apparatus comprises: an input unit for inputting an image; and a processor for shrinking the inputted image to a predetermined ratio, extracting a visual feature from the shrunken image, performing an image quality enhancement process reflecting the extracted visual feature in the inputted image, repeatedly performing, for a predetermined number of times, the shrinking, the extracting, and the image quality enhancement process on the image that has undergone the image quality enhancement process. The present disclosure relates to an artificial intelligence (AI) system and an application thereof that simulate the functions of a human brain, such as recognition, judgment, etc., by using a machine learning algorithm such as deep learning, etc.
Abstract:
An ultrasound medical imaging method includes: displaying an ultrasound image on a screen; determining a view plane, on which the displayed ultrasound image is captured, among view planes; and setting a region of interest corresponding to the determined view plane on the ultrasound image.
Abstract:
A method of decoding including obtaining transformation coefficients of a sub residual block based on location information of a non-zero transformation coefficient and level information of the non-zero transformation coefficient obtained from a bitstream.
Abstract:
A decoding apparatus for decoding an image by obtaining transformation coefficients of a sub residual block based on location information of a non-zero transformation coefficient and level information of the non-zero transformation coefficient obtained from the bitstream.
Abstract:
A method of encoding a video includes: splitting a picture into a maximum coding unit; for the maximum coding unit, determining coding units having a tree structure including coding units of coded depths and determining encoding modes for the coding units of the coded depths by performing encoding based on coding units according to depths, the coding units according to depths obtained by hierarchically splitting the maximum coding unit as a depth deepens; and outputting information about a maximum coding unit size and, for the maximum coding unit, information indicating an order of split information and skip mode information which is selectively determined for the coding units according to depths, information about the encoding modes for the coding units of the coded depths including the split information and the skip mode information which are arranged according to the order, and encoded video data.