Abstract:
Methods and devices are disclosed for implementing opportunistic mobile receive diversity (“OMRD”) on a multi-SIM wireless device. The wireless device may receive a request from a protocol stack associated with the first SIM to utilize the second RF resource for receive diversity, and determine whether a protocol stack associated with the second SIM currently has a lower priority than the protocol stack associated with the first SIM. Upon determining that the protocol stack associated with the second SIM currently has a lower priority than the protocol stack associated with the first SIM, the wireless device may grant control of the second RF resource to the protocol stack associated with the first SIM. Granting control may provide, to the protocol stack associated with the first SIM, a capability to enable and disable receive diversity using the first and second RF resources.
Abstract:
Aspects of the disclosure provide for an access terminal configured to enable communication with two or more wireless communications networks simultaneously. According to some aspects of the disclosure, an access terminal (e.g., dual-SIM access terminal) can be active simultaneously on both networks with reduced interference between transmission and reception. A number of different techniques for mitigating desense on a victim's Rx are illustrated in this disclosure with a GSM aggressor and an EV-DO victim as non-limiting examples. Other aspects, embodiments, and features are also claimed and described
Abstract:
Apparatus and methods are disclosed for gating reverse link transmissions of ¼ rate, ½ rate, ¾ rate, and/or full rate frames in a wireless communication system, such that an access terminal can reduce its power consumption. The gating or discontinuous transmission (DTX) of the reverse link transmission may be conditionally applied based on factors such as the state of the access terminal, the filtered average power of gated the transmissions, or other factors. Further, the gating utilizes a pattern configured to be orthogonal to a pattern utilized for 1x smart blanking, and further configured not to interrupt forward link or reverse link power control signaling. Other aspects, embodiments, and features are also claimed and discussed.
Abstract:
Aspects of the present disclosure are directed to improving maximum transmit power in multi-carrier reverse-link transmission. In one aspect, a method of carrier management for a multi-carrier reverse link transmission is disclosed. A method can include transmitting a reverse link signal on a plurality of carriers, and the reverse link signal including payload data and overhead data. A method can funnel payload data onto a first carrier of the plurality of carriers, while maintaining transmission of the overhead data on all the carriers of the plurality of carriers. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may establish, using a first subscription of the UE, a first communication connection associated with a first service. The UE may establish, using a second subscription of the UE, a second communication connection associated with a second service. The UE may operate in a dual subscriber identity module (SIM) dual active (DSDA) mode based at least in part on establishing the first communication connection and establishing the second communication connection. The UE may perform an action to maintain concurrent services, including the first service and the second service, while operating in the DSDA mode. Numerous other aspects are described.
Abstract:
Aspects described herein relate to communicating, based on a first subscription, with a first Radio Access Technology (RAT) over a bandwidth part (BWP) in a set of one or more configured BWPs, tuning a transceiver away from the BWP to a second frequency to communicate, based on a second subscription, with a second RAT for a period of time, tuning, after the period of time, the transceiver back to a selected BWP to communicate with the first RAT, and handling BWP parameters during or based on the tune away or tune back.
Abstract:
Aspects of the present disclosure relate to wireless communication devices and methods configured to operate with multiple communication protocols in tune-away operations. Some aspects of the present disclosure may improve the legacy tune-away operations at an access terminal. An access terminal establishes a call utilizing a first communication protocol, tunes away from the call to receive cell signaling utilizing a second communication protocol, and tunes back to the call utilizing the first communication protocol. Following the tuning back, during a first predetermined number of subframes and if the size of a reverse link (RL) packet is smaller than a first packet size and larger than a second packet size, the access terminal forces the RL packet to be a low latency (LoLat) packet.
Abstract:
Methods and apparatus for wireless communication are provided. In one aspect, an apparatus for wireless communication comprises a processor configured to determine a time when the plurality of page bursts for the first radio access technology (RAT) will be received. The processor further configured to allocate a portion of time between page bursts for use by a second RAT.
Abstract:
The various embodiments include a dual-SIM-dual-active (DSDA) device and methods for implementing robust receive (Rx) processing to resolve radio frequency coexistence interference between two subscriptions operating on the DSDA device. The DSDA device may detect when a subscription (the “aggressor”) de-senses the other subscription (the “victim”) as a result of the aggressor's transmissions, and in response, implement robust Rx processing to mitigate the effects of de-sense on the victim while causing minimal impact to the aggressor.
Abstract:
Aspects of the disclosure provide for an access terminal configured to enable communication with two or more wireless communications networks simultaneously. According to some aspects of the disclosure, an access terminal (e.g., dual-SIM access terminal) can be active simultaneously on both networks with reduced interference between transmission and reception. A number of different techniques for mitigating desense on a victim's Rx are illustrated in this disclosure with a GSM aggressor and an EV-DO victim as non-limiting examples. Other aspects, embodiments, and features are also claimed and described