Abstract:
A wireless media access control supports asynchronous communication and overlapping transmissions. Here, a wireless node may determine whether to request or schedule a transmission based on control messages it receives from neighboring nodes. In some implementations a scheduled transmission may be divided up into several segments so that a transmitting node may receive and transmit control messages between segments. In some implementations a monitoring period is defined after a scheduled transmission period to enable the transmitting node to acquire control information that may otherwise have been transmitted during the scheduled transmission period. In some implementations data and control information are transmitted over different frequency division multiplexed channels to enable concurrent transmission of the data and control information.
Abstract:
Methods and apparatus are described for improving the transmission of information over wireless communication channels. These techniques include determining available communication channels for transmitting information and determining possible physical layer packet sizes of the available channels. An information unit is partitioned into portions wherein the size of the portions are selected so as to match one of the physical layer packet sizes of the available communication channels. Another aspect is partitioning the information into a number of slices that correspond to the number of transmissions that occur during the information unit interval and assigning each partition to a corresponding transmission. The techniques can be used for various types of information, such as multimedia data, variable bit rate data streams, video data, or audio data.
Abstract:
Devices and methods are provided for the controlling access to access point (AP) base stations. In particular, described herein are techniques for the automated configuration of AP base stations for restricted access. For example, the technique may involve receiving a contact list from an access terminal (AT) associated with the AP base station and a network operator. From the received contact list, saved contacts associated with the operator may be identified. The technique may further involve retrieving identifiers for the identified contacts, and generating an allowed user list from the identifiers, which may be used to configure the AP base station for restricted access.
Abstract:
Beacons may be grouped to facilitate neighbor discovery in a wireless network. For example, neighboring access devices such as IEEE 802.11 access points may cooperate to transmit beacons in a group. In this way, a wireless device seeking to discover the neighboring access devices may scan for the beacons for a shorter period of time. An indication may be provided to enable a wireless device to more efficiently scan the beacons. For example, the indication may indicate the channel the wireless device should scan to receive the next beacon that is to be transmitted. In addition, the indication may include information relating to the transmission time of the next beacon. Other aspects, embodiments, and features are also claimed and described.
Abstract:
Methods and apparatus are described for transmitting information units over a plurality of constant bit rate communication channel. The techniques include encoding the information units, thereby creating a plurality of data packets. The encoding is constrained such that the data packet sizes match physical layer packet sizes of the communication channel. The information units may include a variable bit rate data stream, multimedia data, video data, and audio data. The communication channels include CMDA channels, WCDMA, GSM channels, GPRS channels, and EDGE channels.
Abstract:
Methods and apparatuses are provided that facilitate providing access point measurements to restricted access points. Restricted access points can lessen restrictions to allow devices to register with the restricted access point for providing measurements thereto. Additionally or alternatively, access point measurements can be provided to a minimization of drive tests (MDT) server for providing to the restricted access points. Thus, restricted access points can obtain the access point measurements for performing enhanced interference management or other functionality based at least in part on the measurements.
Abstract:
According to some wireless network standards the size of a neighbor cell list is restricted to a maximum size. The limited size of a neighbor cell list may not reflect the realities of a wireless network deployment, especially for deployments including numerous femto cells clustered in close proximity. Accordingly, as the concentration of macro cells and/or femto cells in an area increases, there lies a challenge to identify and communicate neighbor lists to user devices that reflect the arrangement of a particular portion of the deployment and the needs of the user devices. Various systems, methods and apparatus described herein are configured to provide a user device or a group of user devices a neighbor cell list that includes neighbor cell identifiers chosen from a candidate list.
Abstract:
In some aspects, restricted access nodes are assigned to a designated common channel while access terminals that are in active communication with a macro access node may selectively be assigned to the designated channel. In some aspects, an access terminal associated with macro access node may perform a handoff to a different carrier when the access terminal is in the vicinity of a coverage area of a restricted access node. In some aspects, an access terminal associated with a macro access node may perform a handoff to a different carrier based on location information. In some aspects, access to a restricted access node is controlled based on policy and/or based on operation of an access terminal associated with the restricted access node.
Abstract:
Systems and methodologies are described that facilitate cell search, selection, and reselection within a wireless communication network that includes a home node base station (home nodeB). A user equipment (UE) can detect a home nodeB and communicate such identification to a macro network that includes at least one node base station (nodeB). The detected home nodeB and nodeB can be hierarchically structured in order to prioritize connectivity with the home nodeB over the nodeB. Such prioritization can be implemented by broadcasting home nodeB parameters and macro nodeB parameters having identification information therewith.
Abstract:
Embodiments disclosed herein for MAC processing for efficient use of high throughput systems and that may be backward compatible with various types of legacy systems. In one aspect, a data transmission structure comprises a consolidated poll and one or more frames transmitted in accordance with the consolidated poll. In another aspect, a Time Division Duplexing (TDD) data transmission structure comprises a pilot, a consolidated poll, and zero or more access point to remote station frames in accordance with the consolidated poll. In one aspect, frames are transmitted sequentially with no or substantially reduced interframe spacing. In another aspect, a guard interframe spacing may be introduced between frames transmitted from different sources, or with substantially different power levels. In another aspect, a single preamble is transmitted in association with one or more frames. In another aspect, a block acknowledgement is transmitted subsequent to the transmission of one or more sequential frames.