Abstract:
A method and apparatus for operating a satellite access network (SAN) of a satellite communication system to schedule communications with a user terminal. In some aspects, the SAN may provision a communication frame, for the user terminal, into a number of forward-link (FL) subframes and a different number of reverse-link (RL) subframes. The SAN then transmits the FL subframes to the user terminal via a forward link of the satellite communication system, and subsequently receives the RL subframes from the user terminal via a reverse link of the satellite communication system.
Abstract:
Various aspects of the disclosure relate to handoff (e.g., idle mode handoff or other types of handoff) for a user terminal. In some aspects, a user terminal (UT) may request idle mode handoff information from a ground network (GN). Idle mode handoff information may include, for example, start times for a set of satellites, whereby each particular start time indicates when the UT may handoff to the corresponding satellite. The UT may send the request for idle mode handoff information to the GN when the UT has a defined number of valid entries (e.g., one unexpired entry) remaining in an idle mode handoff table. In some aspects, the idle UT may send the request for idle mode handoff information to the GN based on a time associated with a particular entry in an idle mode handoff table or based on a time of validity of an idle mode handoff table.
Abstract:
A proxy unit is configured to obtain mapping information that maps an identifier for media data to a resource location based on a service for retrieving the media data, wherein the service defines at least one of a plurality of types of transports for transporting the media data, receive a request for the media data from an application service client, determine whether the service is available, and, when the service is available, cause the application service client to receive the media data from a unit that receives the media data using the service from the resource location, based on the mapping information. In this manner, the application service client may receive media data from the unit (e.g., a middleware unit), which then receives the media data using a service that defines transport according to, e.g., broadcast or multicast transport, or another fashion (e.g., unicast) if the defined transport is unavailable.
Abstract:
Systems and methodologies are described that facilitate supporting mobility for UEs and relay eNBs in split-cell relay configurations. Parameters regarding communicating with one or more UEs can be provided to disparate eNBs from a donor eNB to provide mobility for one or more of the UEs or a serving relay eNB. In addition, a donor eNB can request establishment of one or more radio bearers at a target relay eNB for continuing communications with one or more UEs. Moreover, a donor eNB can provide information regarding one or more core network bearers to a target donor eNB to facilitate establishing the core network bearers at the target donor eNB for communicating with the one or more UEs. Furthermore, uplink buffer contents from a relay eNB can be provided to a target donor eNB so communications from the one or more UEs can be continued by the target donor eNB.
Abstract:
Methods, systems, and devices for wireless communications are described. In an example, a method includes a first node receiving a precision time protocol (PTP) message, identifying one or more timing domains to be supported by the first node based at least in part on the PTP message, and sending, to a second node of the wireless communication network, an indicator of the one or more timing domains to be supported by the first node. Another example at a node includes receiving, from additional nodes of the wireless communication network, indicators of one or more timing domains supported by the additional nodes, receiving a PTP message associated with a timing domain, and sending the PTP message to a subset of the additional nodes based at least in a part on the indicators of one or more timing domains supported by the additional nodes.
Abstract:
Methods, systems, and devices for wireless communications are described. In an example, a method includes a first node receiving a precision time protocol (PTP) message, identifying one or more timing domains to be supported by the first node based at least in part on the PTP message, and sending, to a second node of the wireless communication network, an indicator of the one or more timing domains to be supported by the first node. Another example at a node includes receiving, from additional nodes of the wireless communication network, indicators of one or more timing domains supported by the additional nodes, receiving a PTP message associated with a timing domain, and sending the PTP message to a subset of the additional nodes based at least in a part on the indicators of one or more timing domains supported by the additional nodes.
Abstract:
A method and apparatus for operating a user terminal in a satellite communication system during inter-beam handovers. In some aspects, the user terminal may determine an occurrence of an inter-beam handover for switching communication with a network controller of the satellite communication system from a first beam to a second beam. The user terminal measures a channel quality of the second beam based at least in part on the occurrence of the inter-beam handover, and sends the channel quality measurement to the controller via a reverse-link communication.
Abstract:
A proxy unit is configured to obtain mapping information that maps an identifier for media data to a resource location based on a service for retrieving the media data, wherein the service defines at least one of a plurality of types of transports for transporting the media data, receive a request for the media data from an application service client, determine whether the service is available, and, when the service is available, cause the application service client to receive the media data from a unit that receives the media data using the service from the resource location, based on the mapping information. In this manner, the application service client may receive media data from the unit (e.g., a middleware unit), which then receives the media data using a service that defines transport according to, e.g., broadcast or multicast transport, or another fashion (e.g., unicast) if the defined transport is unavailable.
Abstract:
Various aspects of the disclosure relate to handoff (e.g., idle mode handoff or other types of handoff) for a user terminal. In some aspects, a user terminal (UT) may request idle mode handoff information from a ground network (GN). Idle mode handoff information may include, for example, start times for a set of satellites, whereby each particular start time indicates when the UT may handoff to the corresponding satellite. The UT may send the request for idle mode handoff information to the GN when the UT has a defined number of valid entries (e.g., one unexpired entry) remaining in an idle mode handoff table. In some aspects, the idle UT may send the request for idle mode handoff information to the GN based on a time associated with a particular entry in an idle mode handoff table or based on a time of validity of an idle mode handoff table.
Abstract:
Systems and methods which are adapted to provide transport accelerator operation through the use of user agent (UA) signaling are disclosed. In operation according to embodiments, a transport accelerator (TA) analyzes content requests to determine if the content request includes an indication that transport acceleration functionality is to be provided. If such an indication is present, the TA further analyzes the content request to determine if transport acceleration functionality will be provided.