Abstract:
A pixel array includes pixel cells, each including photodiodes. A source follower is coupled to generate an image signal in response image charge generated by the photodiodes. A first row select transistor is coupled to the source follower to output the image signal of the pixel cell. Pixel cells are organized into columns including a first column and a second column. The first row select transistors of the pixel cells of the first and second columns of pixel cells are coupled to first and second column bitlines, respectively. The pixel cells of the second column of pixel cells further include a second row select transistor coupled to the source follower to output the respective image signal to the first column bitline.
Abstract:
A pixel array includes pixel cells disposed in semiconductor material. Each of the pixel cells includes photodiodes, and a floating diffusion to receive image charge from the photodiodes. A source follower is coupled to the floating diffusion to generate an image signal in response image charge from the photodiodes. Drain regions of first and second row select transistors are coupled to a source of the source follower. A common junction is disposed in the semiconductor material between gates of the first and second row select transistors such that the drains of the first and second row select transistors are shared and coupled together through the semiconductor material of the common junction. The pixel cells are organized into a rows and columns with bitlines.
Abstract:
An event driven pixel includes a photodiode configured to photogenerate charge in response to incident light received from an external scene. A photocurrent to voltage converter is coupled to the photodiode to convert photocurrent generated by the photodiode to a voltage. A filter amplifier is coupled to the photocurrent to voltage converter to generate a filtered and amplified signal in response to the voltage received from the photocurrent to voltage converter. A threshold comparison stage is coupled to the filter amplifier to compare the filtered and amplified signal received from the filter amplifier with thresholds to asynchronously detect events in the external scene in response to the incident light. A digital time stamp generator is coupled to asynchronously generate a digital time stamp in response to the events asynchronously detected in the external scene by the threshold comparison stage.
Abstract:
Switching techniques for fast voltage settling in image sensors are described. In one embodiment, an image sensor includes a plurality of lateral overflow integrating capacitor (LOFIC) pixels arranged in rows and columns of a pixel array. The plurality of pixels includes an active pixel configured for exposure to light, and a dummy pixel at least partially protected from exposure to light. A common bitline (BL) is couplable to the active pixel and the dummy pixel. A comparator (OA1) is coupled to the bitline. The comparator is configured to receive a pixel voltage (Vx) from the active pixel on one input and a ramp voltage (Vy) on another input. Charge accumulated by the active pixel is determined at least in part by an intersection between the ramp voltage and the pixel voltage.
Abstract:
A pixel circuit includes a photodiode to accumulate image charge in response to incident light. A transfer transistor is disposed between the photodiode and a floating diffusion disposed in the first semiconductor layer to selectively transfer the image charge accumulated in the photodiode to the floating diffusion. A select circuit is disposed in second semiconductor layer coupled to a control terminal of the transfer transistor through a hybrid bond between the first and second semiconductor layers to select between first and second transfer control signals to control the transfer transistor. The select circuit is coupled to output the first transfer control signal in response to a precharge enable signal during a read out operation of a different row, and output the second transfer control signal in response to a sample enable signal during a read out operation of the row.
Abstract:
A pixel circuit includes a transfer transistor coupled between a photodiode and a floating diffusion to transfer image charge to the floating diffusion. A precharge offset signal is representative of a difference between a row that includes the transfer transistor and a different row that is being read out. The selection circuit is coupled to select between first and second transfer control signals to control the transfer transistor. The selection circuit is coupled to output the first transfer control signal in response to a precharge enable signal during a read out operation of the different row. The precharge enable signal is generated in response to a comparison of a precharge offset signal and an exposure value signal. The selection circuit is coupled to output the second transfer control signal in response to a sample enable signal during a read out operation of the row that includes the transfer transistor.
Abstract:
An image sensor includes a photodiode disposed in a first semiconductor material, and the photodiode is positioned to absorb image light through the backside of the first semiconductor material. A first floating diffusion is disposed proximate to the photodiode and coupled to receive image charge from the photodiode in response to a transfer signal applied to a transfer gate disposed between the photodiode and the first floating diffusion. A second semiconductor material, including a second floating diffusion, is disposed proximate to the frontside of the first semiconductor material. A dielectric material is disposed between the first semiconductor material and the second semiconductor material, and includes a first bonding via extending from the first floating diffusion to the second floating diffusion, a second bonding via disposed laterally proximate to the first bonding via, and a third bonding via disposed laterally proximate to the first bonding via.
Abstract:
A time of flight imaging system includes a light source coupled to emit light pulses to an object in response a light source modulation signal generated in response to a reference modulation signal. Each pixel cell of a time of flight pixel cell array is coupled to sense light pulses reflected from the object in response a pixel modulation signal. A programmable pixel delay line circuit is coupled to generate the pixel modulation signal with a variable pixel delay programmed in response to a pixel programming signal. A control circuit is coupled to receive pixel information from the time of flight pixel array representative of the sensed reflected light pulses. The control circuit is coupled to vary the pixel programming signal during a calibration mode to synchronize the light pulses emitted from the light source with the pulses of the pixel modulation signal.
Abstract:
Techniques and mechanisms to mitigate fixed pattern noise in image sensor data. In an embodiment, readout circuitry includes an adaptive analog-to-digital converter (ADC) comprising a differential amplifier and a feedback path coupled across the differential amplifier, where the ADC is to receive a ramp signal, a control signal associated with a transition rate of the ramp signal, and an analog signal generated by one or more pixels. In another embodiment, the feedback path and/or one or more other circuit elements coupled to the differential amplifier are configured, based on the control signal, to provide one of multiple loop gains with the differential amplifier. The ADC provides a digital output to determine a comparison based on the ramp signal and the analog signal.
Abstract:
A pixel array includes a plurality of visible light pixels arranged in the pixel array. Each one of the plurality of visible light pixels includes a photosensitive element arranged in a first semiconductor die to detect visible light. Each one of the plurality of visible light pixels is coupled to provide color image data to visible light readout circuitry disposed in a second semiconductor die stacked with and coupled to the first semiconductor die in a stacked chip scheme. A plurality of infrared (IR) pixels arranged in the pixel array. Each one of the plurality of IR pixels includes a single photon avalanche photodiode (SPAD) arranged in the first semiconductor die to detect IR light. Each one of the plurality of visible light pixels is coupled to provide IR image data to IR light readout circuitry disposed in the second semiconductor die.