Abstract:
A method and apparatus schedule uplink transmissions with reduced latency. A first transmission power of a first uplink transmission can be determined at a device based on a first set of higher layer configured power control parameters associated with a first TTI length. A higher layer can be higher than a physical layer. The first uplink transmission can span the first TTI length. The first TTI length can include a first number of symbols. A second transmission power of a second uplink transmission can be determined based on a second set of higher layer configured power control parameters associated with a second TTI length. The second uplink transmission can span the second TTI length. The second TTI length can include a second number of symbols. The second number can be different from the first number. The first uplink transmission can be transmitted in a subframe using the first transmission power. At least the second uplink transmission can be transmitted in the subframe using the second transmission power. The first uplink transmission and the second uplink transmission can overlap in time for at least one symbol duration.
Abstract:
A method and apparatus for discontinuous reception for a shortened transmission time interval and processing time includes a device monitoring for data transmission scheduling assignments during an active time of a DRX cycle, and detecting a transmission during the active time. The method further includes the device starting a first timer, in response to the detecting, wherein the first timer is set for a first timer value that specifies an amount of time between detecting the transmission and starting a second timer that extends the active time by a second timer value. The first timer value is determined based on one or both of a selected first TTI length from multiple TTI lengths for which the device can be enabled and/or a selected shorter first processing time over a second processing time associated with a TTI length used by the device.
Abstract:
A method and apparatus provide for low latency transmissions. A first control channel can be transmitted in a first temporal portion of a subframe. The subframe can include a plurality of OFDM symbols in a time domain and a plurality of subcarriers in a frequency domain. The first control channel can occupy a first portion of subcarriers less than the plurality of subcarriers. The first control channel can assign first data resources only in the first temporal portion of the subframe. A second control channel can be transmitted in a second temporal portion of a subframe. The first temporal portion can occupy at least one different first OFDM symbol in the subframe from the second temporal portion. The second temporal portion can occupy at least one different second OFDM symbol in the subframe from the first temporal portion. The second control channel can occupy a second portion of subcarriers that is less than the plurality of subcarriers. The second control channel can assign second data resources only in the second temporal portion of the subframe.
Abstract:
A method and apparatus provide for low latency transmissions. A higher layer configuration can be received at a device. The higher layer configuration can be higher than a physical layer configuration. The higher layer configuration can indicate configuring the device with a low latency configuration for a low latency transmission mode in addition to a regular latency configuration for a regular latency transmission mode. The low latency transmission mode can have a shorter latency than the regular latency transmission mode. A packet can be received based on one of the low latency configuration and the regular latency transmission mode in a subframe n. A feedback packet can be transmitted in a following subframe n+p, where p
Abstract:
A method includes: a wireless communication device (WCD) receiving information indicating that a second user device that is close-by is actively running a messaging application, which establishes an active communication channel with a communication service that is responsible for routing incoming voice and data communication to the WCD. The method also includes: establishing a short range communication between the communication device and the second user device; in response to receiving the information and establishing the short range communication, placing at least a first modem of the WCD in a sleep state; and in response to at least one subsequent trigger event, awakening the first modem to an active state to enable use of the first modem to complete communication. The messaging service is configured to redirect incoming calls to the second user device while the messaging service is active and the devices are within short-range communication of each other.
Abstract:
A first user equipment (UE) wirelessly communicates with a network element (e.g., an eNB) on a carrier (e.g., a cellular uplink or downlink carrier) in accordance with its first capability partitioning configuration. The first UE engages in direct wireless communication on the carrier with a second UE in accordance its second capability partitioning configuration.
Abstract:
A method (700, 800) and apparatus (500, 600) for distinguishing cells with the same physical cell identifier is disclosed. The method can include receiving (820) a handover request message including target cell timing offset information at a potential target cell base station, where the potential target cell base station can have a physical cell identifier. The method can include comparing (830) the received target cell timing offset information with stored timing offset information at the potential target cell base station. The method can include sending (840) a handover request accept message if the received target cell timing offset information is substantially equal to the stored timing offset information. The method can also include receiving (720), at a wireless terminal, a target cell physical cell identifier and determining (730) a target cell timing offset of a radio frame of the target cell with respect to reference timing of a serving cell. The method can include sending (740) a measurement report including the target cell physical cell identifier and the target cell timing offset.
Abstract:
A method, telecommunication apparatus, and electronic device for detecting a status of a radio link are disclosed. A transceiver 302 may maintain a radio link with a network base station 104. A processor 304 may map channel state information to a synchronization status associated with the radio link based on the received signal and determine the synchronization status via a block error rate estimate in the radio link based on the channel state information.
Abstract:
A method in a wireless communication device includes performing measurements of a first serving cell on a first carrier frequency at a first rate, determining whether a signal level of a second serving cell on a second carrier frequency exceeds a threshold, and performing measurements of the first serving cell at a second rate if the signal level of the second serving cell is below the threshold, wherein the second rate is higher than the first rate.
Abstract:
Apparatuses, methods, and systems are transmitting and/or receiving a synchronization signal block. One method includes receiving a synchronization signal block. The method includes detecting a primary synchronization signal and a broadcast channel of the synchronization signal block. Receiving the synchronization signal block includes receiving at least one synchronization signal block of multiple synchronization signal blocks within a time window and the broadcast channel includes multiple sub-bands.