摘要:
An organic light-emitting display device includes an organic light-emitting device, a thin film transistor (TFT) electrically connected to the organic light-emitting device, and a capacitor electrically connected to the organic light-emitting device, the capacitor including a first electrode layer and a second electrode layer opposite to each other, and a first insulating layer interposed as a single layer between the first electrode layer and the second electrode layer.
摘要:
An organic light emitting display (OLED) device is disclosed. The OLED device includes a thin-film transistor (TFT), which includes a gate electrode; an active layer insulated from the gate electrode; source and drain electrodes insulated from the gate electrode and contacting the active layer; and an insulation layer interposed between the source and drain electrodes and the active layer; and an organic light-emitting element electrically connected to the TFT, wherein the insulation layer includes a first insulation sub-layer contacting the active layer; and a second insulation sub-layer formed on the first insulation sub-layer.
摘要:
A back panel for a flat panel display apparatus includes: a pixel electrode disposed on a substrate; a first gate electrode layer of a thin-film transistor (TFT) disposed on the substrate; a second gate electrode layer disposed on the first gate electrode layer and including a semiconductor material; a third gate electrode layer disposed on the second gate electrode layer and including a metal material; a first insulating layer disposed on the third gate electrode layer; an active layer disposed on the first insulating layer and including a transparent conductive oxide semiconductor; a second insulating layer disposed on the active layer; source and drain electrodes disposed connected to the active layer through the second insulating layer; and a third insulating layer covering the source and drain electrodes. The first gate electrode layer and the pixel electrode include a transparent conductive oxide.
摘要:
Provided is a chemical wet preparation method for Group 12-16 compound semiconductor nanocrystals. The method includes mixing one or more Group 12 metals or Group 12 precursors with a dispersing agent and a solvent followed by heating to obtain a Group 12 metal precursor solution; dissolving one or more Group 16 elements or Group 16 precursors in a coordinating solvent to obtain a Group 16 element precursor solution; and mixing the Group 12 metal precursors solution and the Group 16 element precursors solution to form a mixture, and then reacting the mixture to grow the semiconductor nanocrystals. The Group 12-16 compound semiconductor nanocrystals are stable and have high quantum efficiency and uniform sizes and shapes.
摘要:
An organic electroluminescence display including: a gate line disposed on a substrate; a data line crossing the gate line; a TFT connected to the gate and data lines; a capacitor connected to the TFT; and an OLED connected to the TFT. A gate electrode of the TFT and a lower electrode of the capacitor are patterned from a first layer. A gate insulating layer disposed on the gate electrode and an insulating island disposed on the gate line are patterned from a second layer. A semiconductor island disposed on the insulating island and an active layer disposed on the gate insulating layer are patterned from a third layer. An insulating layer is disposed on the TFTs, the capacitor, and between the semiconductor island and the data line. An upper electrode of the capacitor, source/drain electrodes of the TFT, and the data line are patterned from a fourth layer.
摘要:
A flexible substrate bonding and debonding apparatus is disclosed. In one embodiment, the apparatus includes i) a chamber, ii) a lower chuck disposed in a lower portion of the chamber and having a lower heating unit and a cooling conduit built therein, iii) an upper chuck disposed above the lower chuck and having an upper heating unit built therein, iv) a pressurizing unit disposed above the upper chuck and v) a separating unit corresponding to either side of bonding surfaces of a support substrate and a flexible substrate which are disposed between the lower chuck and the upper chuck. The flexible substrate bonding and debonding apparatus can pressurize the flexible substrate and the support substrate simultaneously using a heat-treatment process. Therefore, the flexible substrate can be more reliably bonded and debonded even at low temperature.
摘要:
An organic light emitting display (OLED) device is disclosed. The OLED device includes a thin-film transistor (TFT), which includes a gate electrode; an active layer insulated from the gate electrode; source and drain electrodes insulated from the gate electrode and contacting the active layer; and an insulation layer interposed between the source and drain electrodes and the active layer; and an organic light-emitting element electrically connected to the TFT, wherein the insulation layer includes a first insulation sub-layer contacting the active layer; and a second insulation sub-layer formed on the first insulation sub-layer.