Abstract:
A method and apparatus for deriving directional-priority based candidates for a block coded in Inter, or Merge or Skip mode are disclosed. One or more motion vectors associated with one or more previously coded blocks for a current block are determined first. One or more directional-priority based candidates for the current block are derived by searching through the previously coded blocks according to a priority order associated with prediction direction of the motion vectors. The motion vectors having a first prediction direction are selected with a higher priority than the motion vectors having a second prediction direction. The derived directional-priority based candidates are inserted into a candidate list. The motion vector predictor (MVP) or Merge/Skip candidate is selected from the candidate list for coding the current block in Inter, or Merge or Skip mode.
Abstract:
A method of video coding using coding modes including depth-based block partitioning (DBBP) in a multi-view or three-dimensional (3D) video coding system is disclosed. According to the present invention, when DBBP (depth-based block partition) is used to code a current texture coding unit, the DBBP partition mode is signaled so that the decoder does not need to go through complex computations to derive the DBBP partition mode. Various examples of determining the DBBP partition mode are disclosed.
Abstract:
A method for three-dimensional video coding using aligned motion parameter derivation for motion information prediction and inheritance is disclosed. Embodiments according to the present invention utilize motion parameters associated with a corresponding block for motion information prediction or inheritance. The aligned motion parameters may be derived by searching each current reference picture list of the current block to find a matched reference picture having a same POC (Picture Order Count) or a same view index as that of the reference picture pointed by the MV of the corresponding block. The aligned motion parameters may also be derived by searching each current reference picture list to check whether the reference picture index of the reference picture in the reference view to be inherited exceeds a maximum reference picture index of each current reference picture list of the current block.
Abstract:
A method and apparatus for a three-dimensional encoding or decoding system incorporating view synthesis prediction (VSP) with reduced computational complexity and/or memory access bandwidth are disclosed. The system applies the VSP process to the texture data only and applies non-VSP process to the depth data. Therefore, when a current texture block in a dependent view is coded according to VSP by backward warping the current texture block to the reference picture using an associated depth block and the motion parameter inheritance (MPI) mode is selected for the corresponding depth block in the dependent view, the corresponding depth block in the dependent view is encoded or decoded using non-VSP inter-view prediction based on motion information inherited from the current texture block.
Abstract:
A method and apparatus using a single converted DV (disparity vector) from the depth data for a conversion region are disclosed. Embodiments according to the present invention receive input data and depth data associated with a conversion region of a current picture in a current dependent view. The conversion region is checked to determine whether it is partitioned into multiple motion prediction sub-blocks. If the conversion region is partitioned into multiple motion prediction sub-blocks, then a single converted DV from the depth data associated with the conversion region is determined and each of the multiple motion prediction sub-blocks of the conversion region is processed according to a first coding tool using the single converted DV. If the conversion region is not partitioned into multiple motion prediction sub-blocks, the conversion region is processed according to the first coding tool or a second coding tool using the single converted DV.
Abstract:
A method of signaling depth-based block partitioning (DBBP) for multi-view or three-dimensional (3D) video coding is disclosed. In one embodiment, the DBBP flag is signaled for all candidate prediction modes of the current texture coding unit including a non-2N×N partition mode. The group of candidate prediction modes may consist of 2N×N partition mode and N×2N partition mode. If the DBBP flag indicates the DBBP being used for the current texture coding unit, DBBP encoding is applied to the current texture coding unit or DBBP decoding is applied to one or more PUs associated with the current texture coding unit to recover the current texture coding unit. If the DBBP flag indicates the DBBP being not used for the current texture coding unit, a prediction partition mode is signaled at an encoder side or parsed at a decoder side from a CU (coding unit) level of the bitstream.
Abstract:
Methods and apparatus of processing 360-degree virtual reality (VR360) pictures are disclosed. According to one method, if a leaf coding unit contains one or more face edges, the leaf processing unit is split into sub-processing units along the face edges without the need to signal the partition. In another method, if the quadtree (QT) of binary tree (BT) partition depth for a processing unit has not reached the maximum QT or BT depth, the processing unit is split. If the processing unit contains a horizontal face edge, QT or horizontal BT partition is applied. If the processing unit contains a vertical face edge, QT or vertical BT partition is applied.
Abstract:
Method and apparatus of coding pictures containing one or more virtual boundaries, such as 360-degree virtual reality (VR360) video are disclosed. According to this method, a reconstructed filtered unit associated with a loop filter for a current reconstructed pixel is received. The loop filtering process associated with the loop filter is applied to the current reconstructed pixel to generate a filtered reconstructed pixel, where if the loop filtering process for the current reconstructed pixel is across a virtual boundary of the picture, the loop filtering process is disabled when fixed-size loop filtering is used or a smaller-size loop filter is selected when adaptive-size loop filtering is used for the current reconstructed pixel, where the filtered reconstructed pixel is the same as the current reconstructed pixel when the loop filtering process is disabled. The filtered reconstructed pixel is the same as the current reconstructed pixel.
Abstract:
Methods and apparatus of processing 360-degree virtual reality (VR360) pictures are disclosed. According to one method, if a leaf coding unit contains one or more face edges, the leaf processing unit is split into sub-processing units along the face edges without the need to signal the partition. In another method, if the quadtree (QT) of binary tree (BT) partition depth for a processing unit has not reached the maximum QT or BT depth, the processing unit is split. If the processing unit contains a horizontal face edge, QT or horizontal BT partition is applied. If the processing unit contains a vertical face edge, QT or vertical BT partition is applied.
Abstract:
Methods and apparatus of processing 360-degree virtual reality (VR360) pictures are disclosed. A target reconstructed VR picture in a reconstructed VR picture sequence is divided into multiple processing units and whether a target processing unit contains any discontinuous edge corresponding to a face boundary in the target reconstructed VR picture is determined. If the target processing unit contains any discontinuous edge: the target processing unit is split into two or more sub-processing units along the discontinuous edges; and NN processing is applied to each of the sub-processing units to generate a filtered processing unit. If the target processing unit contains no discontinuous edge, the NN processing is applied to the target processing unit to generate the filtered processing unit. A method and apparatus for CNN training process are also disclosed. The input reconstructed VR pictures and original pictures are divided into sub-frames along discontinuous boundaries for the training process.