Chip-scale optical coherence tomography engine

    公开(公告)号:US11564565B2

    公开(公告)日:2023-01-31

    申请号:US17165001

    申请日:2021-02-02

    Abstract: An optical coherence tomography (OCT) engine includes a digital Fourier-Transform (dFT) spectrometer, a tunable delay line, and a high-speed optical phased array (OPA) scanner integrated onto a single chip. The broadband dFT spectrometer offers superior signal-to-noise ratio (SNR) and fine axial resolution; the tunable delay line ensures large imaging depth by circumventing sensitivity roll-off; and the OPA can scan the beams at GHz rates without moving parts. Unlike conventional spectrometers, the dFT spectrometer employs an optical switch network to retrieve spectral information in an exponentially scaling fashion—its performance doubles with every new optical switch added to the network. Moreover, it also benefits from the Fellgett's advantage, which provide a significant SNR edge over conventional spectrometers. The tunable delay line balances the path length difference between the reference and sample arms, avoiding any need to sample high-frequency spectral fringes.

    Integrated freeform optical couplers

    公开(公告)号:US11378733B2

    公开(公告)日:2022-07-05

    申请号:US16685201

    申请日:2019-11-15

    Abstract: Reflecting light beams off of microscale three-dimensional (3D) freeform surfaces can yield highly efficient coupling into and out of optical waveguides, optical fibers, and photonic chips. The structure of the 3D freeform reflective surface determines the shape of the reflected beam. This allows freeform reflectors to control the mode profile, rotation angle, and divergence angle of light beams. Control of beam shape enables mode matching between source output mode and target input mode, which results in low-loss optical coupling. An inventive freeform reflective surface can direct light beams in plane or out of plane via specular reflection or total internal reflection. A photonic integrated circuit with this type of freeform optical coupler can operate with a bandwidth range of at least 400 nm, potentially encompassing all visible or telecommunications wavelengths, and can be volume manufactured in photonic chips.

    GSST AND APPLICATIONS IN OPTICAL DEVICES
    25.
    发明申请

    公开(公告)号:US20200285083A1

    公开(公告)日:2020-09-10

    申请号:US16826489

    申请日:2020-03-23

    Abstract: An alloy of GexSbySezTem includes atoms of Ge, Sb, Se, and Te that form a crystalline structure having a plurality of vacancies randomly distributed in the crystalline structure. The alloy can be used to construct an optical device including a first waveguide to guide a light beam and a modulation layer disposed on the first waveguide. The modulation includes the alloy of GexSbySezTem which has a first refractive index n1 in an amorphous state and a second refractive index n2, greater than the first refractive index by at least 1, in a crystalline state. The first waveguide and the modulation layer are configured to guide about 1% to about 50% of the light beam in the modulation layer when the alloy is in the amorphous state and guide no optical mode when the alloy is in the crystalline state.

    Apparatus, systems, and methods for on-chip spectroscopy using optical switches

    公开(公告)号:US10386237B2

    公开(公告)日:2019-08-20

    申请号:US15986098

    申请日:2018-05-22

    Abstract: A spectrometer includes an interferometer having a first interference arm and a second interference arm to produce interference patterns from incident light. At least one of the interference arms includes a series of cascaded optical switches connected by two (or more) waveguides of different lengths. Each optical switch directs the incident light into one waveguide or another, thereby changing the optical path length difference between the first interference arm and the second interference arm. This approach can be extended to multi-mode incident light by placing parallel interferometers together, each of which performs spectroscopy of one single mode in the multi-mode incident light. To maintain the compactness of the spectrometer, adjacent interferometers can share one interference arm.

    Integrated Freeform Optical Couplers And Fabrication Methods Thereof

    公开(公告)号:US20230393357A1

    公开(公告)日:2023-12-07

    申请号:US18329059

    申请日:2023-06-05

    CPC classification number: G02B6/43 G02B6/4219

    Abstract: The present technology is related to optics and optical systems, particularly to photonic packaging, optical coupling, optical interconnects, micro-optics, and their fabrication. The present technology includes free-form micro-optical coupler architectures and systems with superb optical performance and a high-throughput method of fabricating large-area coupler arrays for scalable manufacturing. Embodiments include chip-to-fiber-array, chip-to-chip, chip-to-interposer, and chip-to-free-space couplers for applications including photonic packaging, optical communications, LiDAR, optical trapping and manipulation, augmented reality, virtual reality, and sensing.

Patent Agency Ranking