Abstract:
The invention relates to compensation of a radiation pattern in a radio system. The solution comprises forming a primary radiation pattern by weighting signals of antenna branches with primary weights. The primary radiation pattern is compensated with a compensating radiation pattern after one or more antenna branches have been disconnected. The solution enables operation of the radio system without interruptions in certain fault situations of the base station.
Abstract:
The invention relates to a method of allocating radio resources and a telecommunication system including a base station and user equipment. The base station includes a beam forming device configured to form at least two primary beams for signal reception. The antenna array and the beam forming device of the base station are configured to receive a signal transmitted by the user equipment using at least two primary beams, thus providing primary beam-specific signals as output. The base station includes a processing device for determining at least two secondary beam-specific variables associated with two secondary beams using the primary beam-specific signals as input and a transformation between the primary antenna beams and the secondary antenna beams. The telecommunication system further includes an allocation device for allocating radio resources to the user equipment based on the secondary beam-specific variables.
Abstract:
The invention relates to a radio system including transceivers. One of the transceivers includes, for instance, a device for comparing a parameter representing signal quality measured from the received signal with at least one threshold value and a device for determining a quality class for the performance of a MIMO common channel. At least one of the transceivers includes a device for storing the observations made by the second transceiver about the quality class transitions of the transfer channel of the first transceiver and a device for estimating the next quality class of the transfer channel of the first transceiver from the stored quality class transition observations.
Abstract:
A method of forming directional antenna beams, comprising: directing at least two antenna beam signals by means of a beam formation matrix and pre-phasing pre-determined antenna beam signals formed with an antenna array in such a way that the signal of at least one antenna beam has a different phase compared with the signals of other antenna beams. The pre-phasing is implemented with a pre-phasing element, which comprises phasing coefficients in digital implementation. The pre-phasing element is implemented in such a way, for example, that the power of the sum signal of the antenna elements is evenly distributed to the different antenna elements in a pre-determined variation range.
Abstract:
A method includes receiving at least two space-time coded signals from an antenna system associated with a first station, determining complex channel state information based on the received space-time coded signals, and sending the complex channel state information to the first station. In an alternative embodiment, a method includes transmitting at least two space-time coded signals in respective beams of a multi-beam antenna array, measuring a channel impulse response for each space-time coded signal at a second station, and sending an indicia of a selected set of least attenuated signals from the second station to the first station. The multi-beam antenna array is associated with a first station. The beams transmit a signature code embedded in each respective space-time coded signal, and the signature codes are orthogonal so that the second station can separate and measure the channel impulse response corresponding to each space-time coded signal.
Abstract:
The inventive idea is to send in the same cell on one channel several signals and to cause different radio frequency characteristics to the signals received on the same channel. The different characteristics of signals are brought about e.g. by modulating the signals in different ways or by sending the signals from different points, whereby the different signals will experience different radio channels. Owing to the different characteristics, the signals can be distinguished from one another by a joint detection, interference cancellation method. In the downlink direction from the base transceiver station to the mobile station and in the uplink direction from mobile station to the base transceiver station it is often advantageous to use different methods.
Abstract:
A method includes receiving from a first station at a second station at least two space-time coded signals in respective formed beams of a multi-beam antenna array associated with the first station; receiving from the first station, in a signaling channel, a value representing a transmit power level; determining power control coefficients for each of the space-time coded signals; and transmitting the power control coefficients to the first station, wherein the control coefficients are for in part adjusting transmit power.
Abstract:
The selection of the spatial mode together with modulation and encoding schemes based on channel condition measurements requested from MS forms a basis for selecting a best transmission data rate in a wireless link in every channel conditions. A method and network element comprising multiple-input multiple-output (MIMO) capable antenna technology allows the use of a best transmission data rate in the channel if selection of transmission mode has been made correctly. The thresholds for transmission mode selections are pre-determined and compared to instantaneous channel quality information. The practical MIMO solution based on correct selection procedure provides also continuous sufficient channel condition for terminal users when the user moves from LOS situation to NLOS situation.
Abstract:
The invention relates to a method of transmitting data in a communications system. The invention comprises: receiving from a user an uplink signal using multiple narrow antenna beams; measuring beam-specific pilot signal powers from the uplink signal for all the beams; and using the measured pilot signal powers to determine which one or ones of the downlink beams is to be used for a downlink signal for the user.
Abstract:
A fixed phase shift for each of a plurality of radio frequency signal components directed to or received from a plurality of antenna elements is formed in a phase shifter. A desired antenna beam pattern with at least one grating lobe is formed on the basis of the phase-shifted radio frequency signal components of the antenna elements in a predefined antenna structure.